以酒石酸为燃料,硝酸锌为氧化剂,采用溶液燃烧法制备了 Pd (0~7%(原子分数))掺杂纳米ZnO.利用 X 射线衍射仪(XRD)、扫描电子显微镜(SEM)和荧光光谱仪对产物了进行表征,重点讨论了掺杂对 ZnO 气敏性能的影响.结果表明,在330℃测试条件下,纯 ZnO 和7%(原子分数)Pd 掺杂 ZnO 气敏元件对体积分数为5.0×10-5的乙醇气体灵敏度分别为21.4和11.2;元件对5.0× 10-5丙酮气体的灵敏度分别为2.0和8.8.Pd 掺杂显著提高了元件对乙醇和丙酮气体的选择性.
Pd doped nano-ZnO were prepared by solution combustion synthesis (SCS),using tartaric acid as fuel and zinc nitrate as oxidant.The samples were characterized by X-ray diffraction (XRD),scanning electron mi-croscope (SEM)and fluorescence spectroscopy,and the influence of Pd-doping on the gas sensing properties of ZnO was mainly discussed.The results indicate that at 330 ℃,the gas sensitivity of 0 and 7at% Pd-doped sen-sors to 5.0×10 -5 ethanol gas were 21.4 and 1 1.2,to 5.0×10 -5 acetone gas were 2.0 and 8.8,respectively.The selectivity of sensors to ethanol and acetone was significantly improved via Pd-doping.
参考文献
[1] | 霍涌前,王潇,王丹军,崔华莉,康俊,程丽,王升文.燃烧法合成花状、四针状氧化锌及其气敏性能研究[J].功能材料,2011(z3):484-487,491. |
[2] | Jin B J;Bae S H;Lee S Y et al.Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition[J].Materials Science and Engi-neering:B,2000,71(1):301-305. |
[3] | 涂盛辉,吴佩凡,巫辉,杜军,万金保.水热法制备不同形貌纳米ZnO阵列及光学性能的研究[J].功能材料,2012(24):3417-3419,3424. |
[4] | 周亮,罗发,周万城,朱冬梅.等离子喷涂ZnO/Al2O3涂层微波介电特性研究[J].功能材料,2010(10):1800-1802. |
[5] | Chunqiao Ge;Changsheng Xie;Shuizhou Cai .Preparation and gas-sensing properties of Ce-doped ZnO thin-film sensors by dip-coating[J].Materials Science & Engineering, B. Solid-State Materials for Advanced Technology,2007(1/3):53-58. |
[6] | Xin-Yu Xue;Zhao-Hui Chen;Li-Li Xing .Enhanced Optical and Sensing Properties of One-Step Synthesized Pt—ZnO Nanoflowers[J].The journal of physical chemistry, C. Nanomaterials and interfaces,2010(43):18607-18611. |
[7] | Patil K C;Aruna S T;Mimani T .Combustion synthesis:an update[J].Current Opinion in Solid State and Materi-als Science,2002(6):507-512. |
[8] | A.Jagannatha Reddy;M.K. Kokila;H. Nagabhushana .Structural, optical and EPR studies on ZnO:Cu nanopowders prepared via low temperature solution combustion synthesis[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2011(17):5349-5355. |
[9] | 米晓云,吴锡惠,吴文花,孙海鹰.低温燃烧法制备纳米ZnO及其性能表征[J].长春理工大学学报(自然科学版),2011(03):107-109,112. |
[10] | Chen W F;Liu M;Lin Y C et al.A novel synthesis route to Sn1 -x REx O 2-x/2 nanorods via microwave-in-duced salt-assisted solution combustion process[J].Ce-ramics International,2013,39(7):7545-7549. |
[11] | 李家科,刘欣.燃料对溶液燃烧合成ZnO纳米棒微观形貌和光催化性能的影响[J].无机材料学报,2013(08):880-884. |
[12] | Yamazoe N .New approaches for improving semiconduc-tor gas sensors[J].Sensors and Actuators B-Chemical,1991,5(1):7-19. |
[13] | Xu JQ.;Shun YA.;Tian ZZ.;Pan QY. .Grain size control and gas sensing properties of ZnO gas sensor[J].Sensors and Actuators, B. Chemical,2000(1/3):277-279. |
[14] | Zhao, M.;Wang, X.;Cheng, J.;Zhang, L.;Jia, J.;Li, X. .Synthesis and ethanol sensing properties of Al-doped ZnO nanofibers[J].Current applied physics: the official journal of the Korean Physical Society,2013(2):403-407. |
[15] | Xiaoqing Gao;Hua Zhao;Jide Wang .Morphological evolution of flower-like ZnO microstructures and their gas sensing properties[J].CERAMICS INTERNATIONAL,2013(8):8629-8632. |
[16] | Yuan-Chang Liang;Wen-Kai Liao;Xian-Shi Deng.Synthesis and substantially enhanced gas sensing sensitivity of homogeneously nanoscale Pd- and Au-particle decorated ZnO nanostructures[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2014:87-92. |
[17] | Jin L Q;Yuan F L .The relationships between the sur-face oxygen vacancies of ZnO nanoparticles and its pho-toluminescence and photocatalytic properties[J].Science in China Series:B Chemistry,2004,34(4):310-314. |
[18] | Vanheusden K.;Seager CH.;Tallant DR.;Voigt JA.;Gnade BE.;Warren WL. .MECHANISMS BEHIND GREEN PHOTOLUMINESCENCE IN ZNO PHOSPHOR POWDERS[J].Journal of Applied Physics,1996(10):7983-7990. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%