为定量描述镍钛形状记忆合金循环相变诱发塑性导致的超弹性退化行为,在广义粘塑性框架下对Graesser模型进行了拓展,考虑了奥氏体和马氏体弹性模量的差异以及马氏体非线性硬化行为,引入循环相变过程中相变应力和残余应变的演化方程,建立了超弹性NiTi合金循环相变诱发塑性本构模型,总结了模型参数确定方法。通过镍钛形状记忆合金微管的循环相变试验结果和模拟结果的对比表明,提出的模型能够很好地预测镍钛形状记忆合金的循环相变诱发塑性行为。
To describe quantitative super-elasticity degradation behavior caused by the cyclic transformation in-duced plasticity of NiTi shape memory alloy,the Graesser model was extended in the frame of general visco-plasticity to consider the difference between austenite and martensite elastic moduli and the nonlinear hardening behavior of martensite.The evolution equations of transformation stress and transformation strain during cyclic transformation were introduced in the proposed model to capture the behavior of the cyclic transformation in-duced plasticity and the method of parameter calibration was provided.The comparison of experimental and simulated results of NiTi micro-tube subj ected to cyclic loading show that the proposed model can predict rea-sonably the cyclic transformation induced plasticity of NiTi shape memory alloy.
参考文献
[1] | 钱辉,李宏男,宋钢兵.形状记忆合金阻尼器消能减震体系的控制研究[J].振动与冲击,2008(08):42-47. |
[2] | Kazuyuki I .Numerical earthquake response analysis of bridge pier with superelastic seismic dampers[J].Struc-tural Engineering/Earthquake Engineering,1997,14(1):105-110. |
[3] | Experimental investigation of actively confined concrete using shape memory alloys[J].Engineering structures,2010(3):656. |
[4] | 邵红红,彭玉婷,姜秀英,刘雪丽,陈成,朱姿虹.医用镍钛合金表面多层薄膜的制备及摩擦磨损和耐腐蚀性能*[J].功能材料,2014(14):14145-14149. |
[5] | Kan Qianhua;Kang Guozheng .Constitutive model study on transformation ratcheting of super-elastic NiTi alloy[J].International Journal of Plasticity,2010,26(3):441-465. |
[6] | Song Di;Kang Guozheng;Kan Qianhua et al.Effect of martensite plasticity on cyclic deformation of super-elastic NiTi shape memory alloy[J].Smart Materials and Struc-tures,2014,23(1):015008. |
[7] | 杨强军,阚前华,康国政.温度相关的镍钛形状记忆合金循环相变行为研究[J].功能材料,2014(07):7089-7093. |
[8] | Sia Nemat-Nasser;Wei-Guo Guo .Superelastic and cyclic response of NiTi SMA at various strain rates and temperatures[J].Mechanics of materials,2006(5/6):463-474. |
[9] | 李惠,毛晨曦.形状记忆合金(SMA)被动耗能减震体系的设计及参数分析[J].地震工程与工程振动,2001(04):54-59. |
[10] | A.H.M. Muntasir Billah;M. Shahria Alam .Seismic performance of concrete columns reinforced with hybrid shape memory alloy (SMA) and fiber reinforced polymer (FRP) bars[J].Construction and Building Materials,2012(1):730-742. |
[11] | M. Shahria Alam;M. Moni;S. Tesfamariam .Seismic overstrength and ductility of concrete buildings reinforced with superelastic shape memory alloy rebar[J].Engineering structures,2012(Jan.):8-20. |
[12] | Graesser E J;Cozzarelli F A .Shape memory alloys as new materials for aseismic isolation[J].Journal of Engi-neering Mechanics,1991,117(11):2590-2608. |
[13] | Graesser E J;Cozzarelli F A .A proposed three-dimen-sional constitutive model for shape memory alloys[J].Journal of Engineering Material Systems and Struc-tures,1994,5(1):78-89. |
[14] | 钱辉,李宏男,宋钢兵,赵大海.基于塑性理论的形状记忆合金本构模型、试验和数值模拟[J].功能材料,2007(07):1114-1118. |
[15] | Ren WJ;Li HN;Song GB .A one-dimensional strain-rate-dependent constitutive model for superelastic shape memory alloys[J].Smart Materials & Structures,2007(1):191-197. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%