欢迎登录材料期刊网

材料期刊网

高级检索

在高温固相法制备K4 Nb6 O17的基础上,采用油水自组装合成复合光催化剂 Ag @ AgCl/K4 Nb6 O17,利用 XRD、SEM、TEM、EDX、UV-Vis、PL、BET等多种手段对复合光催化剂的微观结构、形貌和性能进行了表征,并研究了可见光下降解亚甲基蓝(MB)的催化性能.研究表明,Ag@AgCl 的粒径约为20 nm,均匀分散在二维层状结构K4 Nb6 O17的表面上;贵金属Ag纳米粒子的表面等离子体效应显著,对可见光的吸收范围从400 nm 拓展到800 nm;Ag@AgCl(25%(质量分数))/K4Nb6O17在可见光照射60 min对亚甲基蓝的降解率为88.2%,远远高于单体Ag@AgCl和K4 Nb6 O17的活性.循环实验证明催化剂具有较好的稳定性,同时对苯酚和罗丹明 B(RhB)也具有一定的催化降解活性.淬灭实验表明自由基和空穴均为活性物种,并在此基础上提出降解机理.

The composite photocatalyst of Ag@AgCl/K4 Nb6 O17 was composed of by the oil-water self-assembly method,on the basis that K4 Nb6 O17 was prepared in the high-temperature solid-state method.The microstruc-ture,morphology and properties of Ag@AgCl/K4 Nb6 O17 composite photocatalyst were characterized by means of XRD,SEM,TEM,EDX,UV-vis,PL,BET;and the photocatalytic performance was valued by the degra-dation of methylene blue (MB),phenol,and Rhodamine B (RhB)under visible light irradiation.The results shows that Ag@AgCl particles with the size of about 20 nm were dispersed in two-dimensional layer structure on the surface of K4 Nb6 O17 and the absorption of visible light of the composite photocatalyst ranged from 400 to 800 nm due to the surface plasmon resonance of Ag.The degradation rate of MB solution over Ag@AgCl (25wt%)/K4 Nb6 O17 under the visible light irradiation reaches 88.2% in an hour,which is more than two times compared with the sum of the Ag@AgCl and K4 Nb6 O17 degradation rate.The composite photocatalyst still ex-hibited high catalytic activity after recycled five times,and photocatalytic activities for the degradation of phenol and RhB were also observed.The degradation mechanism of Ag@AgCl/K4 Nb6 O17 composite photocatalyst was proposed.

参考文献

[1] Fujishima A;Honda K .Electrochemical photolysis of wa-ter at a semiconductor electrode[J].NATURE,1972,238:37-38.
[2] Jaka N;Is F .Evaluation of photodegradation efficiency on semiconductor immobilized clay photocatalyst by using probit model approximation[J].International Journal of Chemical and Analytical Science,2013,4(2):125-130.
[3] 范晓星,于涛,邹志刚.介孔TiO2的材料合成及其在光催化领域的应用[J].功能材料,2006(01):6-9.
[4] 王树峰,朱启安,陈万平,孙旭峰,张琪.掺Fe3+附银二氧化钛光催化剂的制备及其光催化活性研究[J].功能材料,2007(02):179-182.
[5] Piewnuan C;Wootthikanokkhan J;Ngaotrakanwiwat P et al.Preparation of TiO2/(TiO2-V2 O5)/polypyrrole nanocomposites and a study on catalytic activities of the hybrid materials under UV/Visible light and in the dark[J].Superlattices and Microstructures,2014,75:105-117.
[6] Unal U;Matsumoto Y;Tamoto N;Koinuma M;Machida M;Izawa K .Visible light photoelectrochemical activity of K4Nb6O17 intercalated with photoactive complexes by electrostatic self-assembly deposition[J].International Journal of Quantum Chemistry,2006(1):33-40.
[7] Yanning Cao;Lilong Jiang;Huifang Guo.Nano-layered K4Nb6O_(17) as an efficient photocatalyst for methyl orange degradation: Influence of solution pH and surface-dispersed gold nanoparticles[J].Journal of molecular catalysis, A. Chemical,2014:209-216.
[8] Yinghua Liang;Meiyi Shao;Li Liu.Synthesis of Cu2S/K4Nb6O_(17) composite and its photocatalytic activity for hydrogen production[J].Catalysis Communications,2014:128-132.
[9] WenquanCui;Meiyi Shao;Li Liu;YinghuaLiang;DipakRana .Enhanced visible-light-responsive photocatalytic property of PbS-sensitized K_4Nb_6O_(17) nanocomposite photocatalysts[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2013(Jul.1):823-831.
[10] Yinghua Liang;Meiyi Shao;Wenquan Cui.Photocatalytic degradation of Rhodamine B by CdS-loaded K4Nb6O_(17) nanocomposites prepared via reverse microemulsion[J].Journal of molecular catalysis, A. Chemical,2013:87-94.
[11] Amy L. Linsebigler;Guangquan Lu;John T. Yates Jr. .Photocatalysis on TiO_2 Surfaces: Principles, Mechanisms, and Selected Results[J].Chemical Reviews,1995(3):735-758.
[12] Rosseler O;Muthukonda V S;Maithaa K D et al.Solar light photocatalytic hydrogen production from water over Pt and Au/TiO2(anatase/rutile)photocatalysts:Influ-ence of noble metal and porogen promotion[J].Journal of Catalysis,2010,269:179-190.
[13] I.M.Arabatzis;T.Stergiopoulos;M.C.Bernard;D.Labou;S.G.Neophytides;P.Falaras .Silver-modified titanium dioxide thin films for efficient photodegradation of methyl orange[J].Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications,2003(2):187-201.
[14] Yao Xiaxi;Liu Xiaoheng .One-pot synthesis of Ag/AgCl@SiO2 core-shell plasmonic photocatalyst in natural geo-thermal water for efficient photocatalysis under visible light[J].Journal of Molecular Catalysis A:Chemical,2014,393:30-38.
[15] Ao Yanhui;Tang Hong;Wang Peifang et al.Deposi-tion of Ag @ AgCl onto two dimensional square-like BiOCl nanoplates for high visible-light photocatalytic ac-tivity[J].Materials Letters,2014,131:74-77.
[16] Zhou Teng;Xu Yuanguo;Xu Hui et al.In situ oxida-tion synthesis of visible-light-driven plasmonic photocat-alyst Ag/AgCl/g-C3 N4 and itsactivity[J].Ceramics In-ternational,2014,40:9293-9301.
[17] Jianchao Sun;Yanbing Zhang;Juan Cheng.Synthesis of Ag/AgCl/Zn-Cr LDHs composite with enhanced visible-light photocatalytic performance[J].Journal of molecular catalysis, A. Chemical,2014:146-153.
[18] Zhu, M.;Chen, P.;Liu, M. .Graphene oxide enwrapped Ag/AgX (X = Br, Cl) nanocomposite as a highly efficient visible-light plasmonic photocatalyst[J].ACS nano,2011(6):4529-4536.
[19] Yuxin Tang;Vishnu P. Subramaniam;Teck Hua Lau .In situ formation of large-scale Ag/AgCl nanoparticles on layered titanate honeycomb by gas phase reaction for visible light degradation of phenol solution[J].Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications,2011(3/4):577-585.
[20] Junyu Lei;Wei Wang;Mingxin Song;Bo Dong;Zhenyu Li;Ce Wang;Lijuan Li .Ag/AgCl coated polyacrylonitrile nanofiber membranes: Synthesis and photocatalytic properties[J].Reactive & functional polymers,2011(11):1071-1076.
[21] Bowen Ma.Jianfeng Guo;Wei-Lin Dai;Kangnian Fan.Highly stable and efficient Ag/AgCl core-shell sphere: Controllable synthesis, characterization, and photocatalytic application[J].Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications,2013:257-263.
[22] Jiabin Zhou;Ya Cheng;Jiaguo Yu .Preparation and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanocomposite thin films[J].Journal of Photochemistry and Photobiology, A. Chemistry,2011(2/3):82-87.
[23] Qiuye Li;Tetsuya Kafeo;Jinhua Ye .Facile ion-exchanged synthesis of Sn~(2+) incorporated potassium titanate nanoribbons and their visible-light-responded photocatalytic activity[J].International journal of hydrogen energy,2011(8):4716-4723.
[24] Jungang Hou;Chao Yang;Zheng Wang.Three-dimensional Z-scheme AgCl/Ag/γ-TaON heterostructural hollow spheres for enhanced visible-light photocatalytic performance[J].Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications,2013:579-589.
[25] Shuli Bai;Huanying Li;Yujiang Guan;Shengtao Jiang .The enhanced photocatalytic activity of CdS/TiO_2 nanocomposites by controlling CdS dispersion on TiO_2 nanotubes[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2011(15):6406-6409.
[26] Hou Jungang;Wang Zheng;Yang Chao et al.Hierar-chically plasmonic Z-scheme photocatalyst of Ag/AgCl nanocrystals decorated mesoporous single-crystalline metastable Bi20 TiO32 nanosheets[J].Phys Chem C,2013,117(10):5132-5141.
[27] Yin, SY;Zhang, YY;Kong, JH;Zou, CJ;Li, CM;Lu, XH;Ma, J;Boey, FYC;Chen, XD .Assembly of Graphene Sheets into Hierarchical Structures for High-Performance Energy Storage[J].ACS nano,2011(5):3831-3838.
[28] Luo, J.;Jang, H.D.;Sun, T.;Xiao, L.;He, Z.;Katsoulidis, A.P.;Kanatzidis, M.G.;Gibson, J.M.;Huang, J. .Compression and aggregation-resistant particles of crumpled soft sheets[J].ACS nano,2011(11):8943-8949.
[29] Suljo Linic;Phillip Christopher;David B. Ingram .Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy[J].Nature materials,2011(12):911-921.
[30] E.S. Baeissa.Novel Pd/CaSn(OH)_6 nanocomposite prepared by modified sonochemical method for photocatalytic degradation of methylene blue dye[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2014:303-308.
[31] Mohamed A;Rao B P;Venu R et al.Fe3 O4/TiO2 core/shell nanocubes:single-batch surfactantless synthe-sis,characterization and efficient catalysts for methylene blue degradation[J].Ceramics International,2014,40:11177-11186.
[32] Xuegang Luo;Sizhao Zhang;Xiaoyan Lin .New insights on degradation of methylene blue using thermocatalytic reactions catalyzed by low-temperature excitation[J].Journal of hazardous materials,2013(Sep.15):112-121.
[33] Wang Qian;Tian Senlin;Long Jian et al.Use of Fe(Ⅱ)Fe(Ⅲ)-LDHs prepared by co-precipitation method in aheterogeneous-Fenton process for degradation of Methylene Blue[J].Catalysis Today,2014,224:41-48.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%