欢迎登录材料期刊网

材料期刊网

高级检索

与植入骨修复材料相关的感染仍是临床面临的难题,能控释或缓释抗菌剂的骨修复材料在易感染骨缺损修复领域越来越受到青睐.在具有良好生物相容性和成骨作用的纳米羟基磷灰石/聚氨酯(nHA/PU)复合材料中添加磷酸银作为抗菌剂,复合磷酸氢钙结晶水合物(DCPD)作为发泡剂水的来源,通过释放DCPD中结晶水与PU中异氰酸根反应产生CO2气体实现了复合材料均相发泡成型.实验结果显示,85℃条件下自发泡制备的载磷酸银羟基磷灰石/磷酸氢钙/聚氨酯(Ag3 PO4-nHA/DCPD/PU)复合支架的孔隙率高达80%,抗压强度可达2.83 MPa;制备的抗菌支架能有效抑制细菌在材料表面黏附,与细菌接触24 h后抑菌率可达95.45%.该方法简便易行,制备的孔隙分布均匀、贯通性好、孔隙率高和力学性能佳的抗菌复合支架在骨修复领域有较大的应用潜力.

Infection associated with implanted bone repair materials is still a challenging issue in clinic.The bone repair materials with local drug-delivery capacity have drew much attention in susceptible bone defect repair re-cently.In the present study,Ag3 PO4 was selected as an antibacterial agent and incorporated into the nano-hydroxyapatite/polyurethane (nHA/PU)composite,which have been proved to be a biocompatible materials with good osteogenesis.Calcium hydrogen phosphate dihydrate (DCPD)was add into the nHA/PU composite and served as foaming agent.Under certain condition,the crystalline water can release from DCPD and react with isocyanate(—NCO)to generate CO2 ,resulting in the homogeneous self-foaming of the composite.The re-sults revealed that the porosity and compressive strength of fabricated Ag3 PO4 loaded nano-hydroxyapatite/Cal-cium hydrogen phosphate dihydrate/polyurethane (Ag3 PO4-nHA/DCPD/PU)composite scaffolds can reach 80.7% and 95.45%,respectively.The fabricated Ag3 PO4-nHA/DCPD/PU scaffolds also can prevent bacteria adhesion on the material surface effectively and bacteriostatic rate can reach 95.45% after incubation the bacteria with the materials for 24 h.The resultant Ag3 PO4-nHA/DCPD/PU composite scaffolds with high porosity,u-niform porous structure and interconnectivity as well as strong antibacterial properties fabricated by such a facile method have a great potential to be applied in the fields of bone repair.

参考文献

[1] SHAH Sarita R;KASPER F Kurtis;MIKOS Antonios G.Perspectives on the prevention and treatment of infection for orthopedic tissue engineering applications[J].科学通报(英文版),2013(35):4342-4348.
[2] Cheng QL;Li CZ;Pavlinek V;Saha P;Wang HB.Surface-modified antibacterial TiO2/Ag+ nanoparticles: Preparation and properties[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,200612(12):4154-4160.
[3] Imazato S.;Ebi N.;Takahashi Y.;Kaneko T.;Ebisu S.;Russell RRB..Antibacterial activity of bactericide-immobilized filler for resin-based restoratives[J].Biomaterials,200320(20):3605-3609.
[4] SAUVET G.;DUPOND S..Biocidal Polymers Active by Contact. V. Synthesis of Polysiloxanes with Biocidal Activity[J].Journal of Applied Polymer Science,20008(8):1005-1012.
[5] Ma YL;Zhou T;Zhao CS.Preparation of chitosan-nylon-6 blended membranes containing silver ions as antibacterial materials[J].Carbohydrate research,20082(2):230-237.
[6] Chen W;Liu Y;Courtney HS;Bettenga M;Agrawal CM;Bumgardner JD;Ong JL.In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating[J].Biomaterials,200632(32):5512-5517.
[7] Jones JR;Ehrenfried LM;Saravanapavan P;Hench LL.Controlling ion release from bioactive glass foam scaffolds with antibacterial properties[J].Journal of Materials Science. Materials in Medicine,200611(11):989-996.
[8] Gray JE;Norton PR;Alnouno R;Marolda CL;Valvano MA;Griffiths K.Biological efficacy of electroless-deposited silver on plasma activated polyurethane.[J].Biomaterials,200316(16):2759-2765.
[9] 王建荣;刘斌;何康.载银沸石/PMMA抗菌复合义齿基托材料的研究[J].现代口腔医学杂志,2009(4):395-398.
[10] Jian Wang;Minghui Zhao;Yubao Li.Antibacterial properties evaluation of a novel polyurethane-based root canal sealer[J].Materials Science Forum,2015:231-234.
[11] McBane JE;Sharifpoor S;Cai K;Labow RS;Santerre JP.Biodegradation and in vivo biocompatibility of a degradable, polar/hydrophobic/ionic polyurethane for tissue engineering applications.[J].Biomaterials,201126(26):6034-6044.
[12] Giannitelli, S. M.;Basoli, F.;Mozetic, P.;Piva, P.;Bartuli, F. N.;Luciani, F.;Arcuri, C.;Trombetta, M.;Rainer, A.;Licoccia, S..Graded porous polyurethane foam: A potential scaffold for oro-maxillary bone regeneration[J].Materials science & engineering, C. Materials for Biogical applications,2015:329-335.
[13] Haohuai Liu;Li Zhang;Yi Zuo;Li Wang;Di Huang;Juan Shen;Pujiang Shi;Yubao Li.Preparation and Characterization of Aliphatic Polyurethane and Hydroxyapatite Composite Scaffold[J].Journal of Applied Polymer Science,20095(5):2968-2975.
[14] 李丽梅;左奕;杜晶晶;李吉东;孙斌;李玉宝.醇化改性蓖麻油基聚氨酯/n-HA复合支架材料的结构及力学性能[J].无机材料学报,2013(8):811-817.
[15] Naozumi Teramoto;Yuichi Saitoh;Atsuo Takahashi;Mitsuhiro Shibata.Biodegradable Polyurethane Elastomers Prepared from Isocyanate-Terminated Poly(Ethylene Adipate), Castor Oil, and Glycerol[J].Journal of Applied Polymer Science,20106(6):3199-3204.
[16] Mishra AK;Chattopadhyay DK;Sreedhar B;Raju KVSN.FT-IR and XPS studies of polyurethane-urea-imide coatings[J].Progress in Organic Coatings: An International Review Journal,20063(3):231-243.
[17] Mathieu LM;Mueller TL;Bourban PE;Pioletti DP;Muller R;Manson JAE.Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering[J].Biomaterials,20066(6):905-916.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%