欢迎登录材料期刊网

材料期刊网

高级检索

无机材料形成的纳米层可以作为铜扩散阻挡层,已经被广泛地研究,如钽和氮化钽.但是在低于3纳米厚度,尤其在具有较高的深宽比的器件中,此类材料纳米层不够均匀致密,不能作为理想的扩散阻挡层.由短的有机链和功能性端基组成的有机分子纳米层被用来改善表面性能,如润滑,纳米光刻和腐蚀防护.本文介绍了有机分子纳米层作为铜扩散阻挡层的要求;综述了作为铜扩散阻挡层的有机分子纳米层的类型和作用机理;分析了每类分子纳米层的优势和不足;展望了分子纳米层今后的研究方向.此外,介绍了国内对分子纳米层作为铜扩散阻挡层的研究进展.

Inorganic materials are currently used as interfacial barriers,such as Ta and TaN.These materials cannot form uniform and continuous layers below 3 nm thickness,especially in high depth-to-width aspect ratio features.Organic molecular nanolayers (MNLs)are composed of short organic chains and terminated with de-sired functional groups,and attractive for modifying surface properties for a variety of applications.For exam-ple,MNLs are used as lubricants,in nanolithography,and for corrosion protection.In this paper,the basic re-quirements for MNLs as copper diffusion barriers were introduced.The various kinds of molecules,which are applied to fabricate the corresponding MNLs,were reviewed;their interaction mechanism were analyzed and discussed,as well as the advantages and disadvantages.In addition,we have prospected the research interests and summarized the progress of this subject in China.

参考文献

[1] Tomi Laurila;Kejun Zeng;Jorma K. Kivilahti.Failure mechanism of Ta diffusion barrier between Cu and Si[J].Journal of Applied Physics,20006(6):3377-3384.
[2] Yoon J. Song;H. H. Kim;Sung Y. Lee.Integration and electrical properties of diffusion barrier for high density ferroelectric memory[J].Applied physics letters,20004(4):451-453.
[3] T. N. Arunagiri;Y. Zhang;O. Chyan;M. El-Bouanani;M. J. Kim;K. H. Chen;C. T. Wu;L. C. Chen.5 nm ruthenium thin film as a directly plateable copper diffusion barrier[J].Applied physics letters,20058(8):083104-1-083104-3-0.
[4] A. Kohn;M. Eizenberg;Y. Shacham-Diamand.Evaluation of electroless deposited Co(WP) thin films as diffusion barriers for copper metallization[J].Microelectronic engineering,20011/4(1/4):297-303.
[5] Self-assembled subnanolayers as interfacial adhesion enhancers and diffusion barriers for integrated circuits[J].Applied Physics Letters,20032(2):383-385.
[6] A. Krishnamoorthy;K. Chanda;S. P. Murarka;G. Ramanath;J. G. Ryan.Self-assembled near-zero-thickness molecular layers as diffusion barriers for Cu metallization[J].Applied physics letters,200117(17):2467-2469.
[7] P. G. Ganesan;A. P. Singh;G. Ramanath.Diffusion barrier properties of carboxyl- and amine-terminated molecular nanolayers[J].Applied physics letters,20044(4):579-581.
[8] Bottom-Up Engineering of Subnanometer Copper Diffusion Barriers Using NH_2-Derived Self-Assembled Monolayers[J].Advanced functional materials,20107(7):1125.
[9] D. Rebiscoul;V. Perrut;T. Morel;C. Jayet;R. Cubitt;P.H. Haumesser.Alkoxysilane layers compatible with Cu deposition: Towards new diffusion barriers?[J].Microelectronic engineering,2012Apr.(Apr.):45-48.
[10] Chung, Yongwon;Lee, Sanggeun;Mahata, Chandreswar;Seo, Jungmok;Lim, Seung-Min;Jeong, Min-su;Jung, Hanearl;Joo, Young-Chang;Park, Young-Bae;Kim, Hyungjun;Lee, Taeyoon.Coupled self-assembled monolayer for enhancement of Cu diffusion barrier and adhesion properties[J].RSC Advances,2014104(104):60123-60130.
[11] Polyelectrolyte nanolayers as diffusion barriers for Cu metallization[J].Applied physics letters,200316(16):3302-3304.
[12] Gandhi DD;Singh AP;Lane M;Eizenberg M;Ramanath G.Copper diffusion and mechanical toughness at Cu-silica interfaces glued with polyelectrolyte nanolayers[J].Journal of Applied Physics,20078(8):84505-1-84505-4-0.
[13] Wang PI;Wu ZZ;Lu TM;Interrante LV.A novel polycarbosilane-based low-k dielectric material[J].Journal of the Electrochemical Society,20064(4):G267-G271.
[14] B. Singh;S. Garg;J. Rathofe.Ring-Opening-Induced Toughening of a Low-Permittivity Polymer—Metal Interface[J].ACS applied materials & interfaces,20105(5):1275-1280.
[15] A. Maestre Caro;G. Maes;G. Borghs;CM. Whelan.Screening self-assembled monolayers as Cu diffusion barriers[J].Microelectronic engineering,200810(10):2047-2050.
[16] Xin Liu;Qi Wang;Song Wu.Enhanced CVD of Copper Films on Self-Assembled Monolayers as Ultrathin Diffusion Barriers[J].Journal of the Electrochemical Society,20063(3):C142-C145.
[17] B. Ramana Murthy;Wan Mum Yee;Ahila Krishnamoorthy.Self-Assembled Monolayers as Cu Diffusion Barriers for Ultralow-k Dielectrics[J].Electrochemical and solid-state letters,20067(7):F61-F63.
[18] D. Rebiscoul;V. Perrut;O. Renault.Alkoxysilane layers deposited by SC CO_2 process on silicon oxide for microelectronics applications[J].The Journal of Supercritical Fluids,20092(2):287-294.
[19] Zhongkai Zhao;Yongyong He;Haifang Yang.Aminosilanization Nanoadhesive Layer for Nanoelectric Circuits with Porous Ultralow Dielectric Film[J].ACS applied materials & interfaces,201313(13):6097-6107.
[20] Saurabh Garg;Ashutosh Jain;C. Karthik;Binay Singh;Ranganath Teki;V. S. Smentkowski;Michael W. Lane;Ganpati Ramanath.Metal-dielectric interface toughening by molecular nanolayer decomposition[J].Journal of Applied Physics,20103(3):034317-1-034317-4.
[21] Khaderbad, M. A..Porphyrin Self-Assembled Monolayer as a Copper Diffusion Barrier for Advanced CMOS Technologies[J].IEEE Transactions on Electron Devices,20127(7):1963-1969.
[22] Study on chemical vapor deposited copper films on cyano and carboxylic self-assembled monolayer diffusion barriers[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,201017(17):P.4852.
[23] Zhe Kong;Qi Wang;Eryu Chen;Tao Wu.Study on preparation method for short-chain alkylsiloxane self-assembled monolayers and the diffusion behavior of copper on silica surfaces[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2013Aug.15(Aug.15):171-179.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%