欢迎登录材料期刊网

材料期刊网

高级检索

采用柠檬酸络合法制备出六方晶系结构的 LaNiO3和正交晶系结构的 La2 NiO42种催化剂前驱体,运用化学气相沉积法制得2种碳纳米管(CNT)。运用 XRD 对2种催化剂及其前驱体晶体进行结构分析,运用TEM、孔隙比表面分析仪对2种CNT进行形貌和结构的表征,并将2种CNT分别组装成电化学超级电容器,进行了电化学储能性能测试。研究结果表明,在制备工艺和条件一致的情况下,LaNiO3与 La2 NiO4在高温下分别还原为具有不同晶面含量的2种金属Ni纳米颗粒催化剂,通过该催化剂都可制备得到 CNT,但所得 CNT 的产率、形貌、孔结构参数以及电化学储能性能都存在较大差异。通过分析得出这样的结论,CNT 的产率、形貌和孔结构参数与催化剂有直接的关系,而CNT的形貌和孔结构参数又与其电化学储能性能有直接的关系。

The two catalyst precursors of LaNiO3 of hexagonal structure and La2 NiO4 of tetragonal structure were fabricated by citrate method,the two patterns of carbon nanotubes(CNT)were made by chemical vapour deposition technique.XRD method was emploied to analyse the crystal structure of the catalysts and the catalyst precur-sors,TEM,pore surface area analyzer were used to analyse the morphology and pore structure of CNT, the two forms of CNT were respectively assembled to supercapacitors,then tested the electrochemical energy storage performance.The results showed that the LaNiO3 and La2 NiO4 were reduced to two Ni metal nanoparti-cle catalysts with different (111)crystal face parameter at high temperature.And the two Ni metal nanoparticle catalysts could grow CNT.But the obtained CNTs had different yield,morphology and structure,pore struc-ture parameters and electrochemical energy storage performances at the same preparation conditions.The re-search results could be obtained as the following:there was a direct relationship between the CNT catalyst and CNT yield,morphology structure,pore structure parameters.There was a direct relationship between the CNT electrochemical energy storage performances and CNT morphology,pore structure parameters.

参考文献

[1] Yu MF.;Arepalli S.;Ruoff RS.;Files BS..Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties[J].Physical review letters,200024(24):5552-5555.
[2] Jonathan N. Coleman;Umar Khan;Werner J. Blau.Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites[J].Carbon: An International Journal Sponsored by the American Carbon Society,20069(9):1624-1652.
[3] J. Sandler;M. S. P. Shaffer;T. Prasse;W. Bauhofer;K. Schulte;A. H. Windle.Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties[J].Polymer: The International Journal for the Science and Technology of Polymers,199921(21):5967-5971.
[4] Shan Hu;Rajesh Rajamani;Xun Yu.Flexible solid-state paper based carbon nanotube supercapacitor[J].Applied physics letters,201210(10):104103-1-104103-4.
[5] Kyongsoo Lee;Jihun Park;Mi-Sun Lee;Joohee Kim;Byung Gwan Hyun;Dong Jun Kang;Kyungmin Na;Chang Young Lee;Franklin Bien;Jang-Ung Park.In-situ Synthesis of Carbon Nanotube?Graphite Electronic Devices and Their Integrations onto Surfaces of Live Plants and Insects[J].Nano letters,20145(5):2647-2654.
[6] Hewitt, C.A.;Kaiser, A.B.;Roth, S.;Craps, M.;Czerw, R.;Carroll, D.L..Multilayered carbon nanotube/polymer composite based thermoelectric fabrics[J].Nano letters,20123(3):1307-1310.
[7] Ertugrul Sahmetlioglu;Erkan Yilmaz;Ece Aktas;Mustafa Soylak.Polypyrrole/multi-walled carbon nanotube composite for the solid phase extraction of lead(II) in water samples[J].Talanta: The International Journal of Pure and Applied Analytical Chemistry,2014:447-451.
[8] Biro LP.;Horvath ZE.;Szalmas L.;Kertesz K.;Weber F.;Juhasz G. Radnoczi G.;Gyulai J..Continuous carbon nanotube production in underwater AC electric arc[J].Chemical Physics Letters,20033-4(3-4):399-402.
[9] R.B. Mathur;Sarita Seth;Chhotey Lal.Co-synthesis, purification and characterization of single- and multi-walled carbon nanotubes using the electric arc method[J].Carbon: An International Journal Sponsored by the American Carbon Society,20071(1):132-140.
[10] Guo T.;Thess A.;Colbert DT.;Smalley RE.;Nikolaev P..CATALYTIC GROWTH OF SINGLE-WALLED NANOTUBES BY LASER VAPORIZATION[J].Chemical Physics Letters,19951/2(1/2):49-54.
[11] Puretzky AA.;Fan X.;Pennycook SJ.;Geohegan DB..Dynamics of single-wall carbon nanotube synthesis by laser vaporization[J].Applied physics, A. Materials science & processing,20002(2):153-160.
[12] Sinnott S.B.;Andrews R..Model of carbon nanotube growth through chemical vapor deposition[J].Chemical Physics Letters,19991/2(1/2):25-30.
[13] Kong J.;Dai HJ.;Cassell AM..Chemical vapor deposition of methane for single-walled carbon nanotubes[J].Chemical Physics Letters,19984-6(4-6):567-574.
[14] Li YL;Kinloch IA;Windle AH.Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis[J].Science,20045668(5668):276-278.
[15] Mukul Kumar;Yoshinori Ando.Chemical Vapor Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production[J].Journal of nanoscience and nanotechnology,20106(6):3739-3758.
[16] Dal HJ.;Nikolaev P.;Thess A.;Colbert DT.;Smalley RE.;Rinzler AG..SINGLE-WALL NANOTUBES PRODUCED BY METAL-CATALYZED DISPROPORTIONATION OF CARBON MONOXIDE[J].Chemical Physics Letters,19963-4(3-4):471-475.
[17] 宋利君;江奇;易锦;朱晓彤;赵勇.La-Ni-O催化剂前驱体对碳纳米管生长影响的研究[J].无机材料学报,2006(6):1345-1350.
[18] Q.Liang;L.Z.Gao;Q.Li;S.H.Tang;B.C.Liu;Z.L.Yu.Carbon nanotube growth on Ni-particles prepared in situ by reduction of La_2NiO_4[J].Carbon: An International Journal Sponsored by the American Carbon Society,20016(6):897-903.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%