欢迎登录材料期刊网

材料期刊网

高级检索

源于荷叶自清洁效应的超疏水表面已成为材料、仿生等领域的研究热点之一。相对有机高分子材料而言,金属材料超疏水性表面具有更高的耐久性。但晶态金属的“晶粒效应”制约了表面微/纳尺度几何结构的制备。非晶合金在过冷液相区优异的微/纳尺度成形能力,以及较晶态金属更低的表面自由能,使其成为制备超疏水性金属表面的理想材料之一。综述了不同体系非晶合金的表面能;非晶合金表面微/纳尺度几何结构的构造;表面几何结构对疏水性的影响规律及机理;并对非晶合金表面超疏水性进行了展望。

The superhydrophobic surface originated from the lotus leaf has become one of the research highlights in the field of materials and bionics.By comparison with the organic polymer,the super hydrophobic metallic surfaces exhibit much higher durability.However,the “grain size effect”of the crystalline metals restricts the fabrication of surface micro/nano scale geometry.Due to the excellent forming ability in micro/nano scale of a-morphous alloys in the supercooled liquid region,and the lower surface free energy as compared with the crys-talline metals,amorphous alloys has been regarded as an ideal material to fabricate the superhydrophobic metal surface.In this work,the surface free energy of amorphous alloys with different compositions,the fabrication of micro/nano scale surface geometric structure,the influence of surface patterns on the hydrophobicity and the related mechanism are reviewed,finally the prospect of the superhydrophobic amorphous alloy surface is com-mented.

参考文献

[1] Kuang-Han Chu;Rong Xiao;Evelyn N. Wang.Uni-directional liquid spreading on asymmetric nanostructured surfaces[J].Nature materials,20105(5):413-417.
[2] Lin Feng;Shuhong Li;Yingshun Li;Huanjun Li;Lingjuan Zhang;Jin Zhai;Yanlin Song;Biqian Liu;Lei Jiang;Daoben Zhu.Super-Hydrophobic Surfaces: From Natural to Artificial[J].Advanced Materials,200224(24):1857-1860.
[3] Huang L;Cao Z;Meyer HM;Liaw PK;Garlea E;Dunlap JR;Zhang T;He W.Responses of bone-forming cells on pre-immersed Zr-based bulk metallic glasses: Effects of composition and roughness.[J].Acta biomaterialia,20111(1):395-405.
[4] Ralf Blossey.Self-cleaning surfaces-virtual realities[J].Nature materials,20035(5):301-306.
[5] Kako T.;Nakajima A.;Irie H.;Kato Z.;Uematsu K.;Watanabe T.;Hashimoto K..Adhesion and sliding of wet snow on a super-hydrophobic surface with hydrophilic channels[J].Journal of Materials Science,20042(2):547-555.
[6] Ou J;Perot B;Rothstein JP.Laminar drag reduction in microchannels using ultrahydrophobic surfaces[J].Physics of fluids,200412(12):4635-4643.
[7] Reyssat, M;Yeomans, JM;Quere, D.Impalement of fakir drops[J].EPL,20082(2):26006:1-26006:5.
[8] Pietsch, T;Gindy, N;Fahmi, A.Nano- and micro-sized honeycomb patterns through hierarchical self-assembly of metal-loaded diblock copolymer vesicles[J].Soft matter,200911(11):2188-2197.
[9] Zhang L;Zhou ZL;Cheng B;DeSimone JM;Samulski ET.Superhydrophobic behavior of a perfluoropolyether lotus-leaf-like topography[J].Langmuir: The ACS Journal of Surfaces and Colloids,200620(20):8576-8580.
[10] Xu Deng;Lena Mammen;Hans-Jiirgen Butt;Doris Vollmer.Candle Soot as a Template for a Transparent Robust Superamphiphobic Coating[J].Science,2012Jan.6 TN.6064(Jan.6 TN.6064):67-70.
[11] Lingbo Zhu;Yonghao Xiu;Jianwen Xu;Prabhakar A.Tamirisa;Dennis W.Hess.Superhydrophobicity on Two-Tier Rough Surfaces Fabricated by Controlled Growth of Aligned Carbon Nanotube Arrays Coated with Fluorocarbon[J].Langmuir: The ACS Journal of Surfaces and Colloids,200524(24):11208-11212.
[12] Verplanck N;Galopin E;Camart JC;Thomy V;Coffinier Y;Boukherrou R.Reversible electrowetting on superhydrophobic silicon nanowires[J].Nano letters,20073(3):813-817.
[13] Kim, B.S.;Shin, S.;Shin, S.J.;Kim, K.M.;Cho, H.H..Control of superhydrophilicity/superhydrophobicity using silicon nanowires via electroless etching method and fluorine carbon coatings[J].Langmuir: The ACS Journal of Surfaces and Colloids,201116(16):10148-10156.
[14] Bauer S;Park J;von der Mark K.Improved attachment of mesenchymal stem cells on super-hydrophobic TiO2 nanotubes.[J].Acta biomaterialia,20085(5):1576-1582.
[15] Luo, BH;Shum, PW;Zhou, ZF;Li, KY.Preparation of hydrophobic surface on steel by patterning using laser ablation process[J].Surface & Coatings Technology,20108(8):1180-1185.
[16] Ning, T.;Xu, W.;Lu, S..One-step controllable fabrication of superhydrophobic surfaces with special composite structure on zinc substrates[J].Journal of Colloid and Interface Science,20111(1):388-396.
[17] Qiu, R.;Wang, P.;Zhang, D.;Wu, J..One-step preparation of hierarchical cobalt structure with inborn superhydrophobic effect[J].Colloids and Surfaces, A. Physicochemical and Engineering Aspects,20111/3(1/3):144-149.
[18] Zuxin She;Qing Li;Zhongwei Wang.Researching the fabrication of anticorrosion superhydrophobic surface on magnesium alloy and its mechanical stability and durability[J].Chemical engineering journal,2013:415-424.
[19] Zuxin She;Zhongwei Wang;Qing Li.Novel Method for Controllable Fabrication of a Superhydrophobic CuO Surface on AZ91D Magnesium Alloy[J].ACS applied materials & interfaces,20128(8):4348-4356.
[20] Zhongwei Wang;Qing Li;Zuxin She.Low-cost and large-scale fabrication method for an environmentally-friendly superhydrophobic coating on magnesium alloy[J].Journal of Materials Chemistry: An Interdisciplinary Journal dealing with Synthesis, Structures, Properties and Applications of Materials, Particulary Those Associated with Advanced Technology,20129(9):4097-4105.
[21] Jan Schroers.Processing of Bulk Metallic Glass[J].Advanced Materials,201014(14):1566-1597.
[22] N. Li;Y. Chen;M.Q. Jiang.A thermoplastic forming map of a Zr-based bulk metallic glass[J].Acta materialia,20136(6):1921-1931.
[23] Ning Li;Xiaona Xu;Zhizhen Zheng.Enhanced formability of a Zr-based bulk metallic glass in a supercooled liquid state by vibrational loading[J].Acta materialia,2014:400-411.
[24] Monfared, A.;Vali, H.;Faghihi, S..Biocorrosion and biocompatibility of Zr-Cu-Fe-Al bulk metallic glasses[J].Surface and Interface Analysis: SIA: An International Journal Devoted to the Development and Application of Techniques for the Analysis of Surfaces, Interfaces and Thin Films,201311/12(11/12):1714-1720.
[25] Zhang, Xiang;Sun, Bingli;Zhao, Na;Li, Qian;Hou, Jianhua;Feng, Weina.Experimental study on the surface characteristics of Pd-based bulk metallic glass[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2014Dec.1(Dec.1):420-425.
[26] 夏婷 .非晶合金可控表面微结构的超疏水性研究[D].华中科技大学,2013.
[27] K. Zhao;K.S. Liu;J.F. Li.Superamphiphobic CaLi-based bulk metallic glasses[J].Scripta materialia,20094(4):225-227.
[28] Surface modification of Ca_(60)Mg_(15)Zn_(25) bulk metallic glass for slowing down its biodegradation rate in water solution[J].Materials Letters,201013(13):1462.
[29] Yong Chae Jung;Bharat Bhushan.Wetting transition of water droplets on superhydrophobic patterned surfaces[J].Scripta materialia,200712(12):1057-1060.
[30] J.J. He;N. Li;N. Tang.The precision replication of a microchannel mould by hot-embossing a Zr-based bulk metallic glass[J].Intermetallics,20121(1):50-55.
[31] Li, N.;Li, D.J.;Liu, L..Correlation between flow characteristics and interfacial friction behaviour of a Zr-based metallic glass during micro-extrusion[J].Philosophical magazine: structure and properties of condensed matter,201313/15(13/15):1859-1872.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%