欢迎登录材料期刊网

材料期刊网

高级检索

弹性蛋白有良好的弹性、稳定性和生物相容性,可作为构建组织工程复合材料的组成部分。本文以4种不同的酚类物质为介体,通过酪氨酸酶催化氧化介体从而对弹性蛋白进行酶法交联,并借助静电纺丝方法制备纳米纤维膜。结果表明,酪氨酸酶能催化氧化酚类介体物质,且酶催化效率与酚类物质的种类有关;SDS-PAGE凝胶电泳和体积排阻色谱(SEC)表明弹性蛋白在酪氨酸酶/咖啡酸以及酪氨酸酶/儿茶素体系中发生了交联反应,生成了大分子蛋白聚合物。圆二色谱(CD)结果表明酶促交联反应导致弹性蛋白二级结构发生变化,α-螺旋结构含量增多。酪氨酸酶/儿茶素催化体系改善了弹性蛋白的可纺性,制得的纳米纤维粗细均匀,且膜材料有较好的生物相容性。

Elastin has excellent properties of elasticity,stability and biocompatibility,and it could be used as a maj or composite biomaterial for tissue engineering.In the present work,the enzyme-catalyzed cross-linking of elastin was carried out by using tyrosinase and four mediators of phenolic compounds,followed by preparation of elastin nano-fiber membrane by using electrospinning method.The results indicated that tyrosinase could oxi-dize the phenolic mediators and the oxidation efficiency was highly depended on the sort of phenolic compounds. SDS-PAGE and size exclusion chromatography (SEC)analysis demonstrated that elastin could be cross-linked by tyrosinase in the presence of catechin or caffeic acid,resulting in an increase of molecular weight of elastin. Circular Dichroism (CD)data revealed that the enzymatic cross-linking led to the changes of the secondary structures,the content ofα-Helix was increased.Modification of elastin with tyrosinase/catechin improved elas-tin’s spinnability,and the obtained nano-fibers exhibited uniform fineness and good biocompatibility as well.

参考文献

[1] Debelle L;Alix AJ.The structures of elastins and their function.[J].Biochimie,199910(10):981-994.
[2] Heinz,A.;Ruttkies,C.K.H.;Jahreis,G.;Schr盲der,C.U.;Wichapong,K.;Sippl,W.;Keeley,F.W.;Neubert,R.H.H.;Schmelzer,C.E.H..In vitro cross-linking of elastin peptides and molecular characterization of the resultant biomaterials[J].Biochimica et Biophysica Acta. General Subjects,20134(4):2994-3004.
[3] Waterhouse A;Wise SG;Ng MK;Weiss AS.Elastin as a nonthrombogenic biomaterial.[J].Tissue engineering, Part B. Reviews,20112(2):93-99.
[4] Yeo, G.C.;Keeley, F.W.;Weiss, A.S..Coacervation of tropoelastin[J].Advances in colloid and interface science,20111/2(1/2):94-103.
[5] Daamen WF;Veerkamp JH;van-Hest JC;van-Kuppevelt TH.Elastin as a biomaterial for tissue engineering.[J].Biomaterials,200730(30):4378-4398.
[6] Ozsvar, Jazmin;Mithieux, Suzanne M.;Wang, Richard;Weiss, Anthony S..Elastin-based biomaterials and mesenchymal stem cells[J].Biomaterials Science,20156(6):800-809.
[7] Vasconcelos,A.;Gomes,A.C.;Cavaco-Paulo,A..Novel silk fibroin/elastin wound dressings[J].Acta biomaterialia,20128(8):3049-3060.
[8] Greta Faccio;Kristiina Kruus;Markku Saloheimo;Linda Thoeny-Meyer.Bacterial tyrosinases and their applications[J].Process biochemistry,201212(12):1749-1760.
[9] Sampaio S;Taddei P;Monti P;Buchert J;Freddi G.Enzymatic grafting of chitosan onto Bombyx mori silk fibroin: kinetic and IR vibrational studies[J].Journal of Biotechnology,20051(1):21-33.
[10] Freddi G;Anghileri A;Sampaio S;Buchert J;Monti P;Taddei P.Tyrosinase-catalyzed modification of Bombyx mori silk fibroin: grafting of chitosan under heterogeneous reaction conditions[J].Journal of Biotechnology,20062(2):281-294.
[11] Monti P;Freddi G;Sampaio S;Tsukada M;Taddei P.Structure modifications induced in silk fibroin by enzymatic treatments. A Raman study[J].Journal of Molecular Structure,20050(0):685-690.
[12] Thalmann CR;Lotzbeyer T.Enzymatic cross-linking of proteins with tyrosinase[J].European food research and technology =: Zeitschrift fur Lebensmittel-Untersuchung und -Forschung. A,20024(4):276-281.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%