欢迎登录材料期刊网

材料期刊网

高级检索

水凝胶因含水量高及生物相容性好,是一种理想的人工软骨替代材料.通过构建杂化交联双网络,水凝胶的力学性能显著提高,但有关其摩擦机理却较少报道.制备了聚丙烯酰胺/海藻酸钠(PAAm/SA)水凝胶,并分别测定了Na+、Ca2+及Fe3+3种不同价态离子对其弹性模量、含水率、摩擦行为的影响.研究表明,Fe3+溶液中,PAAm/SA的弹性模量为126 kPa,是初始模量的14倍.PAAm/SA水凝胶摩擦应力在整个速率范围内较PAAm最大有一个数量级降低.随离子价数的增大,SA 和 PAAm/SA 水凝胶摩擦应力均呈现增大趋势.当浸泡溶液由Ca2+变为Fe3+时,PAAm/SA水凝胶的摩擦行为由混合润滑变为边界润滑.另外,PAAm/SA 水凝胶在Fe3+中的摩擦应力对压应力的敏感性随速率增大呈现减小趋势.

Due to the high water content and excellent biocompatibility,Hydrogel is the ideal substitute for arti-ficial cartilage.The mechanical property of hydrogels can be significantly improved by fabricating hybrid cross-linked double network.However the research is rarely reported on the friction mechanisms of hybrid cross-linked double network.Polyacrylamide/alginate (PAAm/SA)is fabricated and the elasticity modulus,swelling ratio and frictional behavior of PAAm/SA immersed in Na+,Ca2+ and Fe3+ was measured.The elasticity mod-ulus of PAAm/SA in Fe3+ ionic solutions is 126 kPa which is 14 times of the PAAm/SA immersed in water. The frictional stress of PAAm/SA hydrogel significantly decreases over the entire range of sliding-velocity con-trast to PAAm.The frictional stress of SA and PAAm/SA increased with the valences of ionic.When the solu-tion turn from Ca2+ to Fe3+,the friction mechanism of PAAm/SA shift from mixed lubrication to boundary lu-brication.Moreover,the sensitivities about the friction stress of PAAm/SA in Fe3+ to stress decrease with the slip rate increase.

参考文献

[1] 郑海燕;马敬环;赵孔银;黄海滨;刘莹;魏俊富;张新新.海藻酸钙水凝胶过滤膜的制备及其对硫酸钙的截留[J].功能材料,2015(4):4144-4147,4152.
[2] Chen, Qiang;Zhu, Lin;Chen, Hong;Yan, Hongli;Huang, Lina;Yang, Jia;Zheng, Jie.A Novel Design Strategy for Fully Physically Linked Double Network Hydrogels with Tough, Fatigue Resistant, and Self-Healing Properties[J].Advanced functional materials,201510(10):1598-1607.
[3] Serge H.M.S6ntjens;Dana L.Nettles;Michael A.Carnahan;Lori A.Setton;Mark W.Grinstaff.Biodendrimer-Based Hydrogel Scaffolds for Cartilage Tissue Repair[J].Biomacromolecules,20061(1):310-316.
[4] 司徒方民;赵巨鹏;邸勋;査振刚;屠美;曾戎.聚乙烯醇/季铵盐壳聚糖复合水凝胶的制备及其烫伤敷料的应用?[J].功能材料,2015(9):9133-9138,9143.
[5] Sun, Jeong-Yun;Keplinger, Christoph;Whitesides, George M.;Suo, Zhigang.Ionic Skin[J].Advanced Materials,201445(45):7608-7614.
[6] Jeong-Yun Sun;Xuanhe Zhao;Widusha R. K. Illeperuma;Ovijit Chaudhuri;Kyu Hwan Oh;David J. Mooney;Joost J. Vlassak;Zhigang Suo.Highly stretchable and tough hydrogels[J].Nature,2012Sep.6 TN.7414(Sep.6 TN.7414):133-136.
[7] Jian Ping Gong;Yoshinori Katsuyama;Takayuki Kurokawa;Yoshihito Osada.Double-Network Hydrogels with Extremely High Mechanical Strength[J].Advanced Materials,200314(14):1155-1158.
[8] Kazutoshi Haraguchi;Toru Takehisa.Nanocomposite Hydrogels: A Unique Organic-Inorganic Network Structure with Extraordinary Mechanical, Optical, and Welling/De-swelling Properties[J].Advanced Materials,200216(16):1120-1124.
[9] Huang T;Xu HG;Jiao KX;Zhu LP;Brown HR;Wang HL.A novel hydrogel with high mechanical strength: A macromolecular microsphere composite hydrogel[J].Advanced Materials,200712(12):1622-1626.
[10] Gong, J.P..Why are double network hydrogels so tough?[J].Soft matter,201012(12):2583-2590.
[11] Xue-Feng Li;Chu Wu;Cheng Jiang;Qian-Wen Chen;Dan Zou.Fracture Behavior of Two Highly Stretchable Double Network Hydrogels[J].International Journal of Polymer Analysis and Characterization,20131/8(1/8):504-509.
[12] Jamil Ahmed;Honglei Guo;Tetsurou Yamamoto;Takayuki Kurokawa;Masakazu Takahata;Tasuku Nakajima;Jian Ping Gong.Sliding Friction of Zwitterionic Hydrogel and Its Electrostatic Origin[J].Macromolecules,20149(9):3101-3107.
[13] Shintaro Yashima;Natsuko Takase;Takayuki Kurokawa;Jian Ping Gong.Friction of hydrogels with controlled surface roughness on solid flat substrates[J].Soft matter,201418(18):3192-3199.
[14] Nakano, Y.;Kurokawa, T.;Du, M.;Liu, J.;Tominaga, T.;Osada, Y.;Gong, J.P..Effect of hyaluronan solution on dynamic friction of PVA gel sliding on weakly adhesive glass substrate[J].Macromolecules,201122(22):8908-8915.
[15] Maya Davidovich-Pinhas;Havazelet Bianco-Peled.A quantitative analysis of alginate swelling[J].Carbohydrate Polymers: Scientific and Technological Aspects of Industrially Important Polysaccharides,20104(4):1020-1027.
[16] Gong J.;Osada Y..Gel friction: A model based on surface repulsion and adsorption[J].The Journal of Chemical Physics,199818(18):8062-8068.
[17] Daisaku Kaneko;Tomohiro Tada;Takayuki Kurokawa;Jian P. Gong;Yoshihito Osada.Mechanically Strong Hydrogels with Ultra-Low Frictional Coefficients[J].Advanced Materials,20055(5):535-538.
[18] Kamada, K.;Furukawa, H.;Kurokawa, T.;Tada, T.;Tominaga, T.;Nakano, Y.;Gong, J.P..Surfactant-induced friction reduction for hydrogels in the boundary lubrication regime[J].Journal of Physics. Condensed Matter,201128(28):284107-1-284107-7.
[19] Oogaki, S;Kagata, G;Kurokawa, T;Kuroda, S;Osada, Y;Gong, JP.Friction between like-charged hydrogels-combined mechanisms of boundary, hydrated and elastohydrodynamic lubrication[J].Soft matter,20099(9):1879-1887.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%