欢迎登录材料期刊网

材料期刊网

高级检索

采用数值模拟的方法研究了微重力条件下Czochralski法生长硅晶体过程中熔体热毛细对流的基本特征,探讨了水平和垂直温度梯度的耦合对熔体流动的影响.熔体自由表面与外界辐射换热,水平温度梯度 Ma-rangoni(Ma)数选取(0~3000),底部热流Q选取(1.39×10-2~1.76×10-2).结果表明,当Q和Ma 数均较小时,流动为稳态,液池内产生3个流胞,熔体流动由Q主导,减小Q或增大Ma 数可使流动更稳定.当Ma 数增大到一定值时,流动从稳态转变为非稳态,流动的临界Mac 数随Q的增大而显著减小.流动失稳后,出现了新的流动转变方式,Ma 数为影响表面波动形式的关键因素,Q会改变热流体波数,是晶体附近的热流体波产生的决定因素.随着Ma 数和Q的不断增强,自由表面最终形成弯曲条幅状热流体波.

The bidirectional temperature gradients play an important part in the convection of crystal growth. However,most of the researches before only focused on unidirectional temperature.In this paper,under micro-gravity,a serious of numerical simulations was conducted to study the thermocapillary convection in Czochralski growth of silicon crystal.The coupling effects of vertical and horizontal temperature gradients were discussed. The radiation on the melt surface was considered,the range of horizontal and vertical temperature gradient were Ma=(0-3000)and Q=(1.39×10-2-1.76×10-2)respectively.Results show that flow is steady for small Q and Ma.In this case,there are three flow cells in the melt,the melt flow is dominated by Q;the flow is more sta-ble due to the decrease of the Q and the increase of the Ma.When the Ma exceeds a threshold value,an un-steady three dimensional flow is developed.With the increase of the Q,the critical Ma significantly decreased. When the flow is unsteady,a new way of the flow pattern transtion is found.Ma is the key for the change of the surface fluctuation pattern.The number of the hydrothermal wave is changed by Q,and the generation of hy-drothermal wave which is near the crystal is determined by Q.With the enhancement of the Q and Ma,the flow pattern enventually changes into curved spoke patterns.

参考文献

[1] V. Kumar;G. Biswas;G. Brenner;F. Durst.Effect of thermocapillary convection in an industrial Czochralski crucible: numerical simulation[J].International Journal of Heat and Mass Transfer,20039(9):1641-1652.
[2] Maxim Teitel;Dietrich Schwabe;Alexander Yu. Gelfgat.Experimental and computational study of flow instabilities in a model of Czochralski growth[J].Journal of Crystal Growth,20087/9(7/9):1343-1348.
[3] P.Hintz;D.Schwabe;H.Wilke.Convection in a Czochralski crucible - Part 1: non-rotating crystal[J].Journal of Crystal Growth,20011/2(1/2):343-355.
[4] Nepomnyashchy AA.;Braverman LM.;Simanovskii IB..Stability of thermocapillary flows with inclined temperature gradient[J].Journal of Fluid Mechanics,20010(0):141-155.
[5] C.J. Jing;T. Tsukada;M. Hozawa;K. Shimamura;N. Ichinose;T. Shishido.Numerical studies of wave pattern in an oxide melt in the Czochralski crystal growth[J].Journal of Crystal Growth,20043/4(3/4):505-517.
[6] Liping Yao;Zhong Zeng;Xiaohong Li;Jingqiu Chen;Yongxiang Zhang;Hiroshi Mizuseki;Yoshiyuki Kawazoe.Effects of rotating magnetic fields on thermocapillary flow in a floating half-zone[J].Journal of Crystal Growth,20111(1):177-184.
[7] Peng Zhu;Li Duan;Qi Kang.Transition to chaos in thermocapillary convection[J].International Journal of Heat and Mass Transfer,20132(2):457-464.
[8] Y. Takagi;Y. Okano;H. Minakuchi;S. Dost.Combined effect of crucible rotation and magnetic field on hydrothermal wave[J].Journal of Crystal Growth,2014Jan.1(Jan.1):72-76.
[9] Yamamoto, Takuya;Takagi, Youhei;Okano, Yasunori;Dost, Sadik.Numerical Investigation of the Effect of Free Surface Shape on the Direction of Thermocapillary Flow in a Thin Circular Pool[J].Journal of Chemical Engineering of Japan,20154/7(4/7):407-417.
[10] Wang, Fei;Peng, Lan;Zhang, QuanZhuang;Liu, Jia.Effect of the Vertical Heat Transfer on the Thermocapillary Convection in a Shallow Annular Pool[J].Microgravity science and technology,20152(2):107-114.
[11] You-Rong Li;Nobuyuki Imaishi;Takeshi Azami;Taketoshi Hibiya.Three-dimensional oscillatory flow in a thin annular pool of silicon melt[J].Journal of Crystal Growth,20041/2(1/2):28-42.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%