欢迎登录材料期刊网

材料期刊网

高级检索

为了探究膨胀石墨的储钠性能,利用电化学法制备了膨胀石墨,采用 XRD对其结构进行了表征,并利用恒电流充放电、循环伏安(CV)、电化学阻抗谱(EIS)对其储钠性能进行了分析.结果表明,鳞片石墨经过电化学氧化再经过高温瞬时膨胀之后,层间距略微增大,但依然保持着石墨的层状结构.以二乙二醇二甲醚(DEG-DME)为电解液,膨胀石墨对钠离子表现出较好的嵌/脱钠容量、倍率性能和循环性能:当电流密度为700 mA/g时,其可逆比容量为110.9 mAh/g,是10 mA/g时容量的66.8%.在100 mA/g电流密度下循环100次时,其第100次循环时的放电比容量为154.8 mAh/g,第一次循环时的放电比容量为134.8 mAh/g,容量保持率为114.8%.通过PITT测试,得出钠离子在膨胀石墨中的化学扩散系数为DNa+=7.7×10-8 cm2/s.

In order to investigate the properties for sodium-ion storage of expanded graphite,an expanded graph-ite was prepared by electrochemical method.The structure of the samples were characterized by X-ray diffrac-tion (XRD)and the electrochemical behaviors were studied using galvanostatic charge/discharge test,cyclic voltammogram,and electrochemical impedance spectra.The results indicated that the modified flake graphite still kept the layer structure after electrochemical oxidation and expansion,while the average interlayer distance expanded slightly.Using diethylene glycol dimethyl ether (DEGDME)as the solvent,the capacity of sodium-ion insertion and extraction of the expanded graphite as well as the the rate performance and cycling behavior were improved significantly.A high reversible capacity of 110.9 mAh/g could be obtained at 700 mA/g,which was 66.8% of the capacity at 10 mA/g.After cycling over 100 charge/discharge cycles at 100 mA/g,the ex-panded graphite still maintained the high capacity of 154.8 mAh/g,with a capacity retention ration ratio of 114.8%.A study of potentiostatic intermittent titration technique(PITT)yield that the mean Na-ion diffusion coefficient,was 7.7×10-8 cm2/s.

参考文献

[1] Yun-Hwa Hwang;Eun Gyoung Bae;Kee-Sun Sohn;Sangdeok Shim;Xiaokai Song;Myoung Soo Lah;Myoungho Pyo.SnO_2 nanoparticles confined in a graphene framework for advanced anode materials[J].Journal of Power Sources,2013Oct.15(Oct.15):683-690.
[2] S.J. Richard Prabakar;Yun-Hwa Hwang;Eun Gyoung Bae.Graphene oxide as a corrosion inhibitor for the aluminum current collector in lithium ion batteries[J].Carbon: An International Journal Sponsored by the American Carbon Society,2013:128-136.
[3] Alcantara R.;Lavela P.;Tirado JL.;Mateos JMJ.;de Salazar CG.;Stoyanova R.;Zhecheva E.;Madrigal FJF..Characterisation of mesocarbon microbeads (MCMB) as active electrode material in lithium and sodium cells[J].Carbon: An International Journal Sponsored by the American Carbon Society,20007(7):1031-1041.
[4] P. Thomas;D. Billaud.Electrochemical insertion of sodium into hard carbons[J].Electrochimica Acta,200220(20):3303-3307.
[5] Dahn JR.;Gao Y.;Xing W..THE FALLING CARDS MODEL FOR THE STRUCTURE OF MICROPOROUS CARBONS[J].Carbon: An International Journal Sponsored by the American Carbon Society,19976(6):825-830.
[6] Ravikovitch PI.;Russo R.;Neimark AV.;Vishnyakov A..Unified approach to pore size characterization of microporous carbonaceous materials from N-2, Ar, and CO2 adsorption isotherms[J].Langmuir: The ACS Journal of Surfaces and Colloids,20005(5):2311-2320.
[7] Clement Bommier;Wei Luo;Wen-Yang Gao.Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements[J].Carbon: An International Journal Sponsored by the American Carbon Society,2014:165-174.
[8] Wang Yong-Gang;Chang Young-Chul;Ishida Sumihito;Kirai Yozo;Mochida Isao.Stabilization and carbonization properties of mesocarbon microbeads (MCMB) prepared from a synthetic naphthalene isotropic pitch[J].Carbon: An International Journal Sponsored by the American Carbon Society,19996(6):969-976.
[9] Kunihiro Nobuhara;Hideki Nakayama;Masafumi Nose;Shinji Nakanishi;Hideki Iba.First-principles study of alkali metal-graphite intercalation compounds[J].Journal of Power Sources,2013Dec.1(Dec.1):585-587.
[10] R. Alcantara;P. Lavela;G. F. Ortiz.Carbon Microspheres Obtained from Resorcinol-Formaldehyde as High-Capacity Electrodes for Sodium-Ion Batteries[J].Electrochemical and solid-state letters,20054(4):A222-A225.
[11] Inagaki M.;Tanaike O..HOST EFFECT ON THE FORMATION OF SODIUM-TETRAHYDROFURAN-GRAPHITE INTERCALATION COMPOUNDS[J].Synthetic Metals,19951(1):77-81.
[12] Michio Inagaki;Osamu Tanaike.Determining factors for the intercalation into carbon materials from organic solutions[J].Carbon: An International Journal Sponsored by the American Carbon Society,20017(7):1083-1090.
[13] Tanaike O.;Inagaki M..TERNARY INTERCALATION COMPOUNDS OF CARBON MATERIALS HAVING A LOW GRAPHITIZATION DEGREE WITH ALKALI METALS[J].Carbon: An International Journal Sponsored by the American Carbon Society,19976(6):831-836.
[14] Kim, Haegyeom;Hong, Jihyun;Yoon, Gabin;Kim, Hyunchul;Park, Kyu-Young;Park, Min-Sik;Yoon, Won-Sub;Kang, Kisuk.Sodium intercalation chemistry in graphite[J].Energy & environmental science: EES,201510(10):2963-2969.
[15] Kim, Haegyeom;Hong, Jihyun;Park, Young-Uk;Kim, Jinsoo;Hwang, Insang;Kang, Kisuk.Sodium Storage Behavior in Natural Graphite using Ether-based Electrolyte Systems[J].Advanced functional materials,20154(4):534-541.
[16] Zheng GH;Wu JS;Wang WP;Pan CY.Characterizations of expanded graphite/polymer composites prepared by in situ polymerization[J].Carbon: An International Journal Sponsored by the American Carbon Society,200414(14):2839-2847.
[17] Celzard A.;Mareche JF.;Puricelli S.;Krzesinska M..Scalar and vectorial percolation in compressed expanded graphite[J].Physica, A. Statistical mechanics and its applications,20013/4(3/4):283-294.
[18] A.Celzard;S.Schneider;J.F.Mareche.Densification of expanded graphite[J].Carbon: An International Journal Sponsored by the American Carbon Society,200212(12):2185-2191.
[19] Feiyu Kang;Yong-Ping Zheng;Hai-Ning Wang;Yoko Nishi;Michio Inagaki.Effect of preparation conditions on the characteristics of exfoliated graphite[J].Carbon: An International Journal Sponsored by the American Carbon Society,20029(9):1575-1581.
[20] Inagaki, M;Tashiro, R;Washino, Y;Toyoda, M.Exfoliation process of graphite via intercalation compounds with sulfuric acid[J].The journal of physics and chemistry of solids,20042/3(2/3):133-137.
[21] Winter M.;Spahr ME.;Novak P.;Besenhard JO..Insertion electrode materials for rechargeable lithium batteries [Review][J].Advanced Materials,199810(10):725-763.
[22] Yoo E;Kim J;Hosono E;Zhou H;Kudo T;Honma I.Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries[J].Nano letters,20088(8):2277-2282.
[23] Sebastian Wenzel;Takeshi Hara;Jiirgen Janek;Philipp Adelhelm.Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies![J].Energy & environmental science: EES,20119(9):3342-3345.
[24] Takami N.;Hara M.;Ohsaki T.;Satoh A..RECHARGEABLE LITHIUM-ION CELLS USING GRAPHITIZED MESOPHASE-PITCH-BASED CARBON FIBER ANODES[J].Journal of the Electrochemical Society,19958(8):2564-2571.
[25] Haoshen Zhou;Shenmin Zhu;Mitsuhiro Hibino;Haru Honma;Masaki Ichihara.Lithium Storage in Ordered Mesoporous Carbon (CMK-3) with High Reversible Specific Energy Capcity and Good Cycling Performance[J].Advanced Materials,200324(24):2107-2111.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%