欢迎登录材料期刊网

材料期刊网

高级检索

综述了轻水堆核电站设备用钢在高温高压水环境下腐蚀疲劳的主要影响因素,包括温度、溶解氧含量、钢中硫含量、材料取向、应变速率、应变幅值等,比较了高温高压水中钢的环境疲劳开裂的二个主要机理:膜破裂/滑移溶解机理和氢致开裂机理,以及将环境因素植入疲劳设计曲线的两个主要模型:统计模型和疲劳寿命校正因子模型.并在此基础上对核电高温高压水腐蚀疲劳研究方向做了展望.

参考文献

[1] D R Tice.A review of the U.K.collaborative programmed to test the effects of mechanical and environmental vailables on environmentally assisted crack growth of PWR pressure vessel steels[J].Corrosion Science,1985,25(8/9):705.
[2] P M Scott.A review of environment-sensitive fracture in water reactor materials[J].Corrosion Science,1985,25(8/9):583.
[3] T Kondo,H Nakajima,R Nagasski.Metallographic investigation on the cladding failure in the pressure vessel of a BWR[J].Nuclear Engineering and Design,1971,16(8):205.
[4] J D Atkinson,J E Forrest.Factors influencing the rate of growth of fatigue cracks in RPV steels exposed to a simulated PWR primary water environment[J].Corrosion Science,1985,25(8/9):607.
[5] Y Katada,N Nagata.The effect of temperature on fatigue crack growth behavior of alow alloy pressure vessel steelin a simulated BWR environment[J].Corrosion Science,1985,25(8/9):693.
[6] O K Chopra,H Park.Mechanism of fatigue orack initiation in light water reactor coolant environments[A].International Conforence on Fatigue of Reactor Components[C].Napa,CA:Electric Power Reseawh Institute,2000,25(3).
[7] P M Scott,A E Truswell,S G Druce.Corrosion fatigue of pressure vessel steels in PWR environments-influence of steel sulfur content[J].Corrosion,1984,40:350.
[8] D J Gavenda,P R Luebbers,O K Chopra.Crack initiation and crack growth behavior of carbon and low-alloy steels[J].Fatigue and Fracture of Engineering Materials and Structure,1997,350:243.
[9] J Congleton,T Shoji,R N Parkins.The SCC of reactor pressure vessel in high temperature water[J].Corrosion Science,1985,25(8/9):633.
[10] H Hanninen,W Cullen,M Kemppainen.Effects of MnS inclusion dissolufion on environmentally assisted cracking in low-alloy and carbon steels[J].Corrosion,1990,46(7):563.
[11] O K Chopra,W J Shack.Effects of LWR coolant environments on fatigue design curves of carbon and low-alloy steels[A].NUREG/CR-6583.ANL-97/18[C].Washington,DC:U.S.Nuclear Regulatory Commission.1998.1.
[12] X Wu,Y Katada.Inclusion-involved fatigue cracking in high temperature water[J].Materials and corrosion,2005,56(5):305.
[13] W A Vandersluys,R H Emanueslson.In the 3th International symposium on environmental degradation of materials in nuclear power system-water reactor[C].Warren dale,PA:The Metallurgical Society,1988.277.
[14] O K Chopra,W K Shack.Low-cycle fatigue of piping and pressure vessel steels in LWR environments[J].Nuclear and Engineering Design,1998,184:49.
[15] J Kuniya,H Anzai,I Masaoka.Effect of MnS inclusions on stress corrosion cracking in low-alloy steels[J].Corrosion,1992,48:419.
[16] J D Atkinson,J Yu,Z Y Chen.An analysis of the effect of sulfur content and potential on corrosion fatigue crack growth in reactor pressure vessel steels[J].Corrosion Science,1996,38(5):755.
[17] Y Nakai,H Kurahashi,I Emi,et al.Development of steels resistant to hydrogen induced cracking in wet H2S environment[A].Kawasaki Steel Technical Report[C].JP:National Institute of Materials science.1980.1.
[18] O K Chopra,W J Shack.Overview of fatigue crack initiation in carbon and low-alloy steels in light water reactor environments[J].Journal Pressure Vessel Technology,1999,121:49.
[19] F P Ford,P W Emigh.The prediction of the maximum corrosion fatigue crack propagation rate in the low-alloy steel-de-oxygenated waer system[J].Corrosion Science,1985,25(8/9):673.
[20] X Q Wu,Y Katada.Strain-rate dependence of low cycle fatigue behavior in a simulated BWR environment[J].Corrosion science.2005,47:1415.
[21] X Q Wu,H Guan.E H Han,et al.Influence of surface finish on fatigue cracking behavior of reactor pressure vessel steel in high temperature water[J].Materials and Corrosion,2006,57(11):868.
[22] O K Chopra,W J Shack.Fatigue and crack growth:environmental effects,modeling studies,and design considerations[A].Pressure Vessel and Piping[C].New York:American Society of Mechanical Engineers,1995.95.
[23] M Higuchi,K Iida.Fatigue strength correction factors for carbon and low-alloy steels in oxygen-containing high-temperature water[J].Nuclear and Engineering Design,1991,129:293.
[24] X Q Wu,Y Katada.Strain-amplitude dependent fatigue resistance of low-alloy pressure vessel steels in high-temperature water[J].Journal of Materials Science,2005,40:1953.
[25] X Q Wu,E Han,W Ke,et al.Effects of loading factors on environmental fatigue behavior of low-alloy pressure vessel steels in simulated BWR water[J].Nuclear Engineering and Design,2007.237:1452.
[26] X Q Wu,I S Kim.Effects of strain rate and temperature on tensile behavior of hydrogen-charged SA508 C1.3 pressure vessel steel[J].Materials Science and Engineering A,2003,348:309.
[27] P M Scott.P Combrade.On the mechanism of stress corrosion crack initiation and growth in alloy 600 exposed to PWR primary water[A].The 11th Int.Conf.Environmental Degradation of Materials in Nuclear Systems[C].Stevenson,Washington:American Nuclear Society.2003.1.
[28] J L Smith,O K Chopra.Crack initiation in smooth fatigue specimens of SS in LWR environments[A].ANL/ET/CP-98400[C].Argonne,USA:Argonne National Laboratory,1999.36.
[29] F P Ford.Quantitative prediction of environmentally assisted cracking[J].Corrosion,1996,52(5):375.
[30] Fred H Huaa,Raul B Rebakb.The role of hydrogen and creep in intergranular stress corrosion cracking of Alloy 600 and Alloy 690 in PWR primary water environmen-a review[A].The Second International Conference on Environment-Indueed Cracking of Metals[C].Alberta,Canada:Elsevier,2004.19.
[31] 1992 ASME Boiler and Pressure Vessel Code,Section III,Rules for construction of nuclear power plant components[S],1992.
[32] J M Keisler,O K Chopra,W J Shack.Statistical models for estimating fatigue strain-life behavior of pressure boundary materials in light water reactor environments[J].Nucleair and Engineering Design,1996,167:129.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%