欢迎登录材料期刊网

材料期刊网

高级检索

研制了一种新型铝合金层压复合板,它具有高阻尼、耐腐蚀和可焊接特性。这种材料是由两层纯Al、两层ZnAl合金和一层AlMg合金经热轧制成的复合材料。该材料在50℃附近有一内耗峰,当材料在常温下停放1年后,该峰消失,材料的常温阻尼能力随之降低。计算了该峰的激活能,并通过 SEM、TEM、X-ray和DSC等手段,对该峰的起因和阻尼机制进行了分析。认为,该峰是由层压板中ZnAl合金层引起的,是在热激活条件下由位错拖曳点缺陷运动所致。层压板在常温长时停放过程中,由于晶体回复,位错密度降低,导致该峰逐渐减弱直至消失。此峰符合位错诱生阻尼机制。

An aluminium alloy laminate is developed which is cha racterized by high damping, corrosion resistance and weldability. The laminate is a kind of composite material which is made of two anti-corrosive layers (Al), two damping layers (ZnAl alloy) and one reinforcing layer (AlMg alloy) through hot rolling. The damping characteristics of the laminate is investigated and it is revealed that there is an internal friction peak at about 50℃ in curves of i nternal friction vs temperature. The activation energy of the peak was calculat ed. The origin of the peak and the damping mechanism is researched by means of SEM, TEM, X-ray and DSC. It is considered that the peak is caused by the interac tion between dislocations and point defects in damping layers (AlZn alloy). i.e. the move ment of dislocations dragging point defects under the action of the thermal-act ivation. During the remaining of the laminate at normal atmospheric temperature for a long time, the peak will weaken and even disappear with the restoration of the crystal microstructure and the reduction of the dislocation density in Zn Al alloy layers. The mechanism of the peak is in conformity with that of the dis location-inducted damping.

参考文献

[1] Hakaru Masumoto et al.[J].Journal of the Japan Institute of Metals,1984,48(03):319.
[2] Masakatsu Hinai et al.[J].Journal of the Japan Institute of Metals,1984,48(03):323.
[3] Masakatsu Hinai et al.[J].Journal of the Japan Institute of Metals,1986,50(06):590.
[4] Hakaru Masumoto et al.[J].Transactions of the Japan Institute of Metals,1983,24(10):681.
[5] 石纯义,张迎元.高阻尼铝合金[J].材料开发与应用,1990(02):10.
[6] 张忠明 等.[J].中国有色金属学报,1999,9(09):1.
[7] Azushima et al.[J].Journal of the Iron and Steel Institute,1984,70(16):2269.
[8] 锌/铝轧制复合研究[J].中国有色金属学报,1999(02):300.
[9] 张迎元.'96中国材料研讨会(Ⅱ-2):材料设计与加工[C].北京:化学工业出版社,1997:206-210.
[10] 罗兵辉,周善初,张迎元,朱劲松.高阻尼铝合金层压板的内耗[J].中国有色金属学报,1996(03):131-134.
[11] 张迎元.内耗与超声衰减[A].广州:中山大学出版社,1996:120-122.
[12] 罗兵辉,张迎元,柏振海,朱劲松.高阻尼铝合金层压板的低温内耗峰[J].中国有色金属学报,1997(02):97-99.
[13] Nowick A S;Berry B S.Anelastic relaxation in crystalline solids[M].New York and London: AcademicPress,1972:57-65.
[14] Torisaka Y et al.[J].Acta Metallurgica Et Materialia,1991,39(05):947.
[15] Zhu Xianfang;Zhang Lide.[J].Journal of Physics F:Metal Physics,1988(18):159.
[16] ZnAl40合金过饱和固溶体时效特性[J].中国有色金属学报,1999(03):536.
[17] Ju C P et al.[J].Acta Materialia,1985,33(01):71.
[18] Masakatsu Hinai et al.[J].Journal of the Japan Institute of Metals,1991,55(06):715.
[19] Granato A;Lucke K .[J].Journal of Applied Physics,1956,27:583.
[20] 谭起.内耗与固体缺陷[M].合肥:中国科学技术大学出版社,1991:173-184.
[21] 晶须增强锌铝合金复合材料拉伸断口分形[J].中国有色金属学报,1999(01):97.
[22] 张迎元.高阻尼铝合金层压复合材料阻尼特性和工程应用研究[J].船舶工程,1997(05):29-31,55.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%