制备了一种樟脑磺酸掺杂聚苯胺(PANI-(D-CSA))新型复合阳极,研究了其最佳配比,并在海底微生物燃料电池(BMFC)中测定其电化学性能.采用XRD衍射、热失重对聚苯胺阳极材料进行了表征.结构分析表明,PANI-(D-CSA)为部分结晶,热稳定性较好.性能测试表明,PANI-(D-CSA)质量分数为50%时复合阳极具有最小的内阻,最低的阳极极化曲线斜率,同时电池的输出功率密度显著提高,最大输出功率密度达到233.9 mW/m2,是BMFC-石墨阳极的3.7倍.这种新型复合阳极有望应用在BMFC中以得到较高的输出功率密度.
参考文献
[1] | Feng Zhao;Robert C. T. Slade;John R. Varcoe .Techniques for the study and development of microbial fuel cells: an electrochemical perspective[J].Chemical Society Reviews,2009(7):1926-1939. |
[2] | Kazuya Watanabe .Recent Developments in Microbial Fuel Cell Technologies for Sustainable Bioenergy[J].Journal of Bioscience and Bioengineering,2008(6):528-536. |
[3] | Lowy D A;Tender L M .Harvesting energy from the marine sediment-water interface Ⅲ Kinetic activity of quinone-and antimony-based anode materials[J].Journal of Power Sources,2008,185:70-75. |
[4] | Feng C H;Li F B;Liu H Y et al.A dual-chamber microbial fuel cell with conductive film-modified anode and cathode and its application for the neutral electro-Fanton process[J].Electrochimica Acta,2010,55:2048-2054. |
[5] | Zhang T;Cui CZ;Chen SL;Ai XP;Yang HX;Ping S;Peng ZR .A novel mediatorless microbial fuel cell based on direct biocatalysis of Escherichia coli[J].Chemical communications,2006(21):2257-2259. |
[6] | Lowy DA;Tender LM;Zeikus JG;Park DH;Lovley DR .Harvesting energy from the marine sediment-water interface II - Kinetic activity of anode materials[J].Biosensors & Bioelectronics: The International Journal for the Professional Involved with Research, Technology and Applications of Biosensers and Related Devices,2006(11):2058-2063. |
[7] | Yong Yuan;Sunghyun Kim .Polypyrrole-Coated Reticulated Vitreous Carbon as Anode in Microbial Fuel Cell for Higher Energy Output[J].Bulletin of the Korean Chemical Society,2008(1):168-172. |
[8] | Sambhu Bhadra;Dipak Khastgir;Nikhil K. Singha .Progress in preparation, processing and applications of polyaniline[J].Progress in Polymer Science,2009(8):783-810. |
[9] | Cheng SA;Logan BE .Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells[J].Electrochemistry communications,2007(3):492-496. |
[10] | Qiao Y;Li C M;Bao S J et al.Carbon nanotube/polyaniline composite as anode material for microbial fuel cells[J].Journal of Power Sources,2007,170:79. |
[11] | Zhang LJ.;Wan MX. .Synthesis and characterization of self-assembled polyaniline nanotubes doped with D-10-camphorsulfonic acid[J].Nanotechnology,2002(6):750-755. |
[12] | Zhang ZM.;Wei ZX.;Wan MX. .Nanostructures of polyaniline doped with inorganic acids[J].Macromolecules,2002(15):5937-5942. |
[13] | Ting Chen;Chaofang Dong;Xiaogang Li;Jin Gao .Thermal degradation mechanism of dodecylbenzene sulfonic acid- hydrochloricacid co-doped polyaniline[J].Polymer Degradation and Stability,2009(10):1788-1794. |
[14] | Mattioli Belmonte M;Giavaresi G;Biagini G;Virgili L;Giacomini M;Fini M;Giantomassi F;Natali D;Torricelli P;Giardino R .Tailoring biomaterial compatibility: in vivo tissue response versus in vitro cell behavior.[J].The international journal of artificial organs,2003(12):1077-1085. |
[15] | Qiao, Y.;Bao, S.-J.;Li, C.M.;Cui, X.-Q.;Lu, Z.-S.;Guo, J. .Nanostructured polyaniline/titanium dioxide composite anode for microbial fuel cells[J].ACS nano,2008(1):113-119. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%