采用包覆-挤压-拉拔法制备了Ag-20Cu(质量分数,下同)形变宏观复合材料丝材.测试了不同变形量下Ag-20Cu复合丝材的极限抗拉强度、各相的显微硬度,扫描电镜测量了各相的尺寸,研究了变形过程中Ag-20Cu复合丝材力学性能的变化规律.结果表明,由于形变引起复合材料内部各相发生不同程度的加工硬化和回复,复合材料的力学性能随变形量的增加表现出不同的变化趋势,低应变阶段,由于各相的加工硬化和位错在复合界面处塞积,其力学性能随变形量的增大而增大;高应变阶段,主要由于基体Ag相的回复效应,其力学性能随变形量的增加而减小.
The deformation processed Ag-20Cu (wt%) macro-composites were fabricated by metal cladding ,post-extruding and then cold-drawing. The mechanical properties of the composite wires were tested and the dimensions of Ag and Cu layers were measured quantitatively depending on the scanning electron microscopic images. The effects of deformation on the mechanical properties of Ag-20Cu wires were investigated. The results indicated that the mechanical properties increase at low strain stage because of the work-hardening of Cu layers and pile-up of dislocation at the interface and decrease at high strain stage mainly due to the recovering of Ag layers.
参考文献
[1] | Dupouy F;Askenazy S;Peyrade J P et al.Composite conductors for high pulsed magnetic fields[J].Physical Review B:Condensed Matter,1995,211(1/4):43-45. |
[2] | PJ.T.WOOD;J.D.EMBUR;M.F.ASHBY .AN APPROACH TO MATERIALS PROCESSING AND SELECTION FOR HIGH-FIELD MAGNET DESIGN[J].Acta materialia,1997(3):1099-1104. |
[3] | Lecouturier F;Spencer K;Thilly L;Embury JD .Perspectives for Cu/SS macrocomposite and Cu/X nanofilamentary conductors used in non-destructive high-field pulsed magnets under cryogenic conditions[J].Physica, B. Condensed Matter,2004(0):582-588. |
[4] | Han K;Sims JR;Campbell LJ;Schneider-Muntau HJ;Pantsyrnyi V.I. -;Shikov A;Nikulin A;Vorobieva A;Embury JD .The fabrication, properties and microstructure of Cu-Ag and Cu-Nb composite conductors[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,1999(1):99-114. |
[5] | J.B. Liu;L. Meng;Y.W. Zeng .Microstructure evolution and properties of Cu-Ag microcomposites with different Ag content[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2006(0):237-244. |
[6] | 宁远涛,张晓辉,张婕.大变形Cu-10Ag原位纳米纤维复合材料[J].稀有金属材料与工程,2005(12):1930-1934. |
[7] | J.H.Chung;J.S.Song;S.I.Hong .Bundling and drawing processing of Cu-Nb microcomposites with various Nb contents[J].Journal of Materials Processing Technology,2001(1/3):604-609. |
[8] | S. I. Hong;P. H. Kim;Y. C. Choi .High strain rate superplasticity of deformation processed Cu-Ag filamentary composites[J].Scripta materialia,2004(2):95-99. |
[9] | 高海燕,王俊,疏达,孙宝德.Cu-Fe-Ag原位复合材料的组织和性能[J].复合材料学报,2006(06):120-126. |
[10] | J.S. Song;S.I. Hong;Y.G. Park .Deformation processing and strength/conductivity properties of Cu-Fe-Ag microcomposites[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2005(1):69-74. |
[11] | V. Vidal;L. Thilly;F. Lecouturier;P.-O. Renault .Cu nanowhiskers embedded in Nb nanotubes inside a multiscale Cu matrix: The way to reach extreme mechanical properties in high strength conductors[J].Scripta materialia,2007(3):245-248. |
[12] | Sauvage X;Thilly L;Lecouturier F et al.FIM and 3D atom probe analysis of Cu/Nb nanocomposite wires[J].Nano-Structured Materials,1999,11(08):1031-1039. |
[13] | K. Xu;A. M. Russell;L. S. Chumbley;F. C. Laabs .A deformation processed Al-20%Sn in-situ composite[J].Scripta materialia,2001(6):935-940. |
[14] | 孙世清,于艳菊.形变铜基复合材料研究进展[J].热加工工艺,2003(06):50-52. |
[15] | 耿永红,郭迎春,张吉明,刘方方,管伟明,张昆华.大塑性变形金属基纳米纤维复合材料制备工艺与研究现状[J].材料导报,2007(08):67-71. |
[16] | 张雷,孟亮.应变程度对Cu-12%Ag合金纤维相形成及导电性能的影响[J].金属学报,2005(03):255-259. |
[17] | 张雷 .纤维相增强Cu-Ag合金的显微组织及力学和电学性能[D].浙江大学,2005. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%