欢迎登录材料期刊网

材料期刊网

高级检索

集成电路工业目前多使用如氮化钛、氮化钽等氮化物作为防止铜扩散的阻挡层.然而,在氟离子存在的情况下,铜、银和钯等金属离子会与氮化物发生自发性的置换反应,并造成金属的沉积.所沉积出的钯金属尽管被认为是污染物,但其可作为后续电镀铜工艺的晶种层.此外,利用化学镀技术可成功在活化后的二氧化硅上沉积出镍钼磷薄膜,该材料具有作为铜内联阻挡层及晶种层的潜力.通过原子力显微镜(AFM)、电子显微镜(SEM)、Auger电子显微镜(AES)、X光绕射(XRD)、四点探针(4-point probe)及表面轮廓仪(Alpha-step),研究了镍钼磷薄膜的微观结构、沉积速率、组成及电阻率等.另外,通过直接镀铜及二次离子质谱仪的测量,初步确定了镍钼磷可作为阻挡层及晶种层的特性.

Nitride materials such as TiN and TaN have been used as barrier layers for Cu in IC industry.However,spontaneous displacement reaction was found to occur between nitride barriers and some metal ions such as Cu2+ ,Ag+ and Pd2+ in the presence of F-,leading to the deposition of metal seeds.Despite being regarded as a contaminant,Pd was found to be capable of serving as the platform for subsequent Cu electrodeposition.In addition,a potential NiMoP barrier/seed layer for Cu interconnect was successfully formed via electroless deposition atop SiO2 after activation.The crystal structure,deposition rate,composition and the electrical resistivity of NiMoP were investigated by atomic force microscope (AFM),scanning electron microscope (SEM),Auger electron microscope (AES),X-ray diffraction (XRD),4-point probe,and surface profilometer (Alpha-step).The barrier layer and seed layer functions of NiMoP were verified by direct Cu electrodeposition and secondary ion mass spectroscopy (SIMS).

参考文献

[1] Andricacos P C;Uzoh C;Dukovic J O.Copper On-Chip Interconnections:A Breakthrough in Electrodeposition to Make Better Chips[J].The Electrochemical Society Interface,1999:32-39.
[2] Theis TN. .The future of interconnection technology[J].IBM journal of research and development,2000(3):379-390.
[3] Chiou JC.;Chen MC.;Wang HI. .DIELECTRIC DEGRADATION OF CU/SIO2/SI STRUCTURE DURING THERMAL ANNEALING[J].Journal of the Electrochemical Society,1996(3):990-994.
[4] Sandhu G S;Meikle S G;Doan T T .Metalorganic Chemical Vapor Deposition of TiN Films for Advanced Metallization[J].Applied Physics Letters,1993,62:240-242.
[5] Staia M H;Puchi E S;Lewis D B et al.Microstructuural Characterization of Chemically Vapor Deposited TiN Coating[J].Surface and Coatings Technology,1996,86-87:432-437.
[6] Leutenecker R;Froeschle B;Cao Minh U et al.Titanium Nitride Films for Barrier Applications Produced by Rapid Thermal CVD and Subsequent In-situ Annealing[J].Thin Solid Films,1995,270:621-626.
[7] Tsai M H;Sun S C;Lee C P et al.Metal-organic Chemical Vapor Deposition of Tantalum Nitride Barrier Layers for ULSI Applications[J].Thin Solid Films,1995,270:531-536.
[8] Cho KN.;Noh KB.;Oh JE.;Paek SH.;Park CS.;Lee SI.;Lee MY. Lee JG.;Han CH. .Remote plasma-assisted metal organic chemical vapor deposition of tantalum nitride thin films with different radicals[J].Japanese journal of applied physics,1998(12A):6502-6505.
[9] Walter K C;Fetherston R P;Sridharan K et al.Sputter Deposition of Tantalum 10 Nitride Films on Copper Using An RFPlasma[J].Materials Research Bulletin,1994,29:827-832.
[10] Fung H P;Wan C C.Possibility of Direct Electrochemical Copper Deposition[A].Seattle:The Electrochemical Society,Inc,1999:275.
[11] Joseph P. O'Kelly;Karen F. Mongey;Yveline Gobil .Room temperature electroless plating copper seed layer process for damascene interlevel metal structures[J].Microelectronic engineering,2000(1/4):473-479.
[12] Tseng W T;Lo C H;Lee S C .Eleetroless Deposition of Cu Thin Films with CuC12-HNO3 Based Chemistry:Ⅰ.Chemical Formulation and Reaction Mechanisms[J].Journal of the Electrochemical Society,2001,148(05):C333-338.
[13] Tseng W T;Lo C H;Lee S C .Electroless Deposition of Cu Thin Films with CuC12-HNO3 Based Chemistry:Ⅱ.Kinetics and Microstrueture[J].Journal of the Electrochemical Society,2001,148(05):C339-347.
[14] Hong-Hui Hsu;Chao-Chan Hsieh;Min-Hsian Chen .Displacement Activation of Tantalum Diffusion Barrier Layer for Electroless Copper Deposition[J].Journal of the Electrochemical Society,2001(9):C590-C598.
[15] Dubin VM.;Zhao B.;Vasudev PK.;Ting CH.;Shachamdiamand Y. .SELECTIVE AND BLANKET ELECTROLESS COPPER DEPOSITION FOR ULTRALARGE SCALE INTEGRATION[J].Journal of the Electrochemical Society,1997(3):898-908.
[16] SHACHAM-DIAMAND Y;Lopatin S .High Aspect Ratio Quartermicron Electroless Copper Integrated Technology[J].Microelectronic Engineering,1997,37-38:77-88.11.
[17] SHACHAM-DIAMAND Y;Dubin V M .Copper Electroless Deposition Technology for Ultra-large-scale-integration (ULSI)Metallization[J].Microelectronic Engineering,1997,33:47-58.
[18] SHACHAM-DIAMAND Y;Lopatin S .[J].Electrochimica Acta,1999,44(21-22):3639-3649.
[19] Y. Shacham-Diamand;Y. Sverdlov .Electrochemically deposited thin film alloys for ULSI and MEMS applications[J].Microelectronic engineering,2000(1/4):525-531.
[20] SHACHAM-DIAMAND Y;Sverdlov Y;Petrov N .Electroless Deposition of Thin-Film Cobalt-Tungsten-Phosphorus Layers Using Tungsten Phosphoric Acid for ULSI and MEMS Applications[J].Journal of the Electrochemical Society,2001,148(03):e162-c167.
[21] A. Kohn;M. Eizenberg;Y. Shacham-Diamand;Y. Sverdlov .Characterization of electroless deposited Co(W,P) thin films for encapsulation of copper metallization[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2001(1):18-25.
[22] Paunovic M;Schlesinger M.Fundamentals of Electrochemical Deposition[M].NY:John Wiley & Sons,Inc,1998:157-158.
[23] Krasteva N;Forty V;Armyanov S .Thermal Stability of NiP and NiCuP Amorphous Alloys[J].Journal of the Electrochemical Society,1994,141(10):2864-2867.
[24] Matsuoka M;Imanishi S;Hayashi T .Physical Properties of Electroless NiP Alloy Deposits from a Pyrophosphate Bath[J].Plating and Surface Finishing,1989,76:54-58.
[25] VAN DEN Meerakker J E A M .On the Mechanism of Electroless Plating-Ⅱ.One Mechanism for Different Reductants[J].Journal of Applied Electrochemistry,1981,11:395-400.
[26] Koiwa I;Usudo M;Yamada K et al.Effect of Heat-Treatment on Properties of Electroless-Deposited Nickel-Molybdenum-Phosphorus Alloy Films[J].Journal of the Electrochemical Society,1988,135:718-726.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%