将BP和RBF神经网络的理论和算法应用于预测超高压容器爆破压力的研究中.选用MATLAB神经网络工具箱建立预测爆破压力的神经网络模型,研究模型中影响爆破压力的主要参数,内外径比值和材料的强度极限,屈服极限,屈服强度与强度极限的比值;选用Faupel、Crossland和Bones等文献中的爆破实验数据对神经网络模型进行训练,用训练好的神经网络模型对爆破压力进行预测.预测结果表明,用BP和RBF神经网络方法建立的模型能够对超高压筒形容器的爆破压力进行较为准确的预测.
The theory and the algorithm of BP and RBF neural network are applied in the research for predicting the bursting pressure of ultra-high pressure vessel.First.the neural network model has been established for predicting bumting pressure by using MATLAB Neural Network Tools in consideration of the main factors of influencing bursting pressure.The factors include ultimate strength,yield stress,ratio ofouter radius to inner radius ofthe pressure vessel cylinders and yield ratio.Then the established neural network model is trained by choosing a large amount of bursting experimental data from Faupel,Crossland and Bones,and some
参考文献
[1] | 邵国华.超高压容器设计[M].北京:化学工业出版社,2002 |
[2] | 黄载生.超高压容器爆破压力计算[J].压力容器,1992(03):74. |
[3] | ZHENG Chuanxiang.ESTIMATE OF BURSTING PRESSURE OF MILD STEEL PRESSURE VESSEL AND PRESENTATION OF BURSTING FORMULA[J].机械工程学报(英文版),2006(03):421-424. |
[4] | 朱学政;陈同理 .高压容器爆破压力的计算[J].石油化工设备技术,1995,16(01):23-26. |
[5] | 周羽,包士毅,董建令,吴鸿麟.压力容器分析设计方法进展[J].清华大学学报(自然科学版),2006(06):886-892. |
[6] | W.-J. Song;S.-W. Kim;J. Kim .Analytical and numerical analysis of bursting failure prediction in tube hydroforming[J].Journal of Materials Processing Technology,2005(0):1618-1623. |
[7] | Jeong Kim;Sang-Woo Kim;Hoon-Jae Park;Beom-Soo Kang .A prediction of bursting failure in tube hydroforming process based on plastic instability[J].The International Journal of Advanced Manufacturing Technology,2006(5/6):518-524. |
[8] | M. Egemen Aksoley;Babur Ozcelik;Ismail Bican .Comparison of bursting pressure results of LPG tank using experimental and finite element method[J].Journal of hazardous materials,2008(2/3):699-709. |
[9] | G.H. Majzoobi;G.H. Farrahi;M.K. Pipelzadeh .Experimental and finite element prediction of bursting pressure in compound cylinders[J].International Journal of Pressure Vessels and Piping,2004(12):889-896. |
[10] | 葛哲学;孙志强.神经网络理论与MATLAB R2007实现[M].北京:电子工业出版社,2007 |
[11] | 张良均;曹晶;蒋世忠.神经网络实用教程[M].北京:机械工业出版社,2008 |
[12] | 任远,白广忱.径向基神经网络在近似建模中的应用研究[J].计算机应用,2009(01):115-118. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%