欢迎登录材料期刊网

材料期刊网

高级检索

脱粘界面是陶瓷颗粒增强金属基复合材料中存在的细观缺陷,根据细观力学方法将陶瓷颗粒、脱粘界面和基体壳简化为椭球三相胞元.并通过Eshelby等效夹杂理论和Mori-Tanaka方法的推导得到颗粒和脱粘界面的等效本征应变,进而对三相胞元的弹性常数进行预报.考虑到三相胞元在复合材料中随机分布,由坐标变换公式和物理方程计算出复合材料的有效弹性常数,并根据数值方法得出弹性常数与颗粒以及脱粘界面含量的关系.

参考文献

[1] 镍基复合材料及其它基体的复合材料的应用[J].稀有金属快报,2001(11):12.
[2] Taya M .On stiffness and strength of an aligned short-fiber reinforced composite containing penny-shaped cracks in the matrix[J].Computational Materials Science,1981,15:198-210.
[3] Ju J W;Lee H K .A micromechanical damage model for effective elastoplastic behavior of partially debended ductile matrix composites[J].Computer Methods in Applied Mechanics and Engineering,2000,183:201-222.
[4] Tan H;Huang Y;Liu C;Geubelle PH .The Mori-Tanaka method for composite materials with nonlinear interface debonding[J].International Journal of Plasticity,2005(10):1890-1918.
[5] 梁军;杜善义 等.一种含夹杂和微裂纹分布复合材料的弹性常数预报方法[J].复合材料学报,1997,14:102-108.
[6] 郑代华,杨庆生.多相复合材料的有效模量预测[J].铁道学报,2000(02):86-89.
[7] 姚战军,郑坚,倪新华,邢士勇.颗粒增强复合材料有效弹性模量的预报[J].机械强度,2007(01):72-76.
[8] Eshelby J D .The elastic field outside an ellipsoidal inclusion[J].Proceedings of the Royal Society,1959,A252:561-569.
[9] Moil T;Tanaka K .Average stress in matrix and average energy of materials with misfitting inclusion[J].Acta Metallurgica,1973,21:571-574.
[10] 倪新华,郑坚,康敬欣,高克林.含随机分布弧形微裂纹陶瓷复合材料的强度预报[J].稀有金属材料与工程,2007(z1):721-723.
[11] 杜善义;王彪.复合材料细观力学[M].北京:科学出版社,1998:31-32.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%