欢迎登录材料期刊网

材料期刊网

高级检索

采用球-平面接触微动磨损设备,对轧制固溶316L不锈钢在0.9%NaCl溶液微动过程中局部腐蚀的作用进行了研究.结果表明微动是使不锈钢发生腐蚀的主导因素.开路状态下,316L不锈钢在微动过程中发生严重缝隙腐蚀,金属离子在微动区外发生氧化反应,生成碱性氢氧化物沉淀,加剧了微动区中心的贫氧特征,并改变了材料表面钝化膜与基体间的应力状态,使材料表面氧化膜发生局部损伤,成为主导微动损伤扩展的主要因素之一.在强阳极极化态下,微动区边缘磨屑诱发点蚀,促进了微动损伤区的扩展过程,增大了不锈钢的微动失重.

The effect of localized corrosion, such as crevice corrosion and pitting on fretting attack ofsolution annealed 316L stainless steel in saline solution, has been studied with ball-plane contactedfretting test systen. The results suggested that fretting induced remarkable corrosion, and the combinationof fretting and crevice-like condition made the material suffer severe corrosion damage. The oxidation ofthe fretting corrosion product resulted in alkaline deposit on the surface outside of the fretted centeer,which would play an important role in the fretting process. Debris could play sone apparent role on thedamage when fretting carried on under high anodic polarization condition. The concentration of debris onthe edge of fretting area might accelerate the occurrence of pitting, which made great contribution to thedamage and the expansion of fretting scars.

参考文献

[1] Waterhouse R B.Freuing Corrosion[M].New York,Pergamon Press,1972
[2] Waterhouse R B.Freuing Fatigue[M].London,Appl. Sci. Publ.LTD,1981
[3] 李诗卓;董祥林.材料的冲蚀磨损与微动磨损[M].北京:机械工业出版社,1987
[4] 李东紫.微动磨损与防护技术[M].西安:陕西科学技术出版社,1992
[5] Silva R;Barbosa M A;Rondet B et al.Impedance and photoelectrochemical measurement on passive films formed on metallicbiomaterials[J].British Corrosion Journal,1990,25(02):136.
[6] Lewis G;Daigle K .Electrochemical behavior of Ti-6Al-4V alloy in static biosimulating solutions[J].Journal of Applied Biomaterials,1993,4:47.
[7] BROWN S A;Simpson J P;Biomed J.Crevice and fretting corrosion of stainless-less plate and screws[J].Journal of Biomedical Materials Research,1981(15):867.
[8] Prabhat Kamar;Anthony J Hick;Asphahani A I.Properties and characteristics of cast wrought and powder metallurgy(P/M)processed cobalt-chromium-molybdenum implant materials[A].Philadelphia,1985:30.
[9] Browm S A;Meritt K.Fretting Corrosion on saline and serum[J].Journal of Biomedical Materials Research,1981(15):479.
[10] John P Sheehan;Charles R Morin;Kenneth F.Packer.Study f strss crrsin cracking suscptiiity f typ 316 stainss st invitr[A].Philadelphia,1985:57.
[11] Taira M;Lautenschlager E P.In vitro corrosion fatigue of 316L cold worked stainless steel[J].Journal of Biomedical Materials Research,1992(26):1171.
[12] Mevellec C;Burleigh T D;Shanbhag A S.Corrsion in modular femoral hip prostheses A study of 22 retrieved implants[A].Piscataway,NJ,USA,96TH8154,1996:3.
[13] MusolinoMC;Pettit F S;Burleigh T D.Analysis of corrosion in stainless steel total hip prostheses[A].Piscataway,NJ,USA,96TH8154,1996:5.
[14] Bown S A;Simpson J P.Crevice andfreetig oorrosion of stainless-steel plate and screws[J].Journal of Biomedical Materials Research,1981(15):867.
[15] Suh N P.The delamination theory of wear[J].WEAR,1973(25):111.
[16] Sproles E S;Gaul DJ;Duquette D J.Fundamentals of Tribology[M].Eds. SuhNP, SakeN, MIT,1980:585.
[17] Stowers I F;RabinowiczE.Spherical particles formed in the fretting of silver[J].Journal of Applied Physics,1972(43):2485.
[18] Hurricks P L.The occurrence of spherical particles in fsetting wear[J].WEAR,1974(27):319.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%