欢迎登录材料期刊网

材料期刊网

高级检索

在多点裂纹起始的情况下,可以观察到多个微观裂纹的萌生和早期扩展,所以宏观裂纹形成的寿命估算是比较复杂的.本文介绍一种二维计算机模型,模拟一种马氏体钢F82H的多点裂纹起始过程,损伤的累积程度通过单位面积裂纹密度表示,微裂纹萌生循环数通过Tanaka-Mura公式确定.该模型可以模拟材料的微观结构参数(如晶粒尺寸和取向)对裂纹萌生寿命的影响,给出定量的寿命估算表达式.模拟的裂纹密度和循环数的关系与试验结果符合得相当好.

参考文献

[1] HONG Y;LU Y;ZHENG Z .Orientation preference and fractal character of short fatigue cracks in a weld metal[J].Journal of Materials Science,1991,26:1821-1826.
[2] R. G. Tryon;T. A. Cruse .A reliability-based model to predict scatter in fatigue crack nucleation life[J].Fatigue & Fracture of Engineering Materials and Structures,1998(3):257-267.
[3] Liyang Xie .Multi-crack growth/coalescence simulation and its role in passive component leak-before-break concept[J].Nuclear engineering and design,1999(2/3):113-122.
[4] HU Y M;FLOER W;KRUPP U et al.Microstructurally short fatigue crack initiation and growth in Ti-6.8Mo-4.5Fe-1.5Al[J].Materials Science and Engineering,1999,A278:170-180.
[5] HOSHIDE T;YAMADA T;FUJIMURA S et al.Short crack growth and life prediction in low cycle fatigue on smooth specimens[J].Engineering Fracture Mechanics,1985,21(01):85-101.
[6] CARSTENSEN J V;MAGNIN T .Characterization and qualification of multiple crack growth during low cycle fatigue[J].International Journal of Fatigue,2003,23:195-200.
[7] TANAKA K;MURA T .A dislocation model for fatigue crack initiation[J].Journal of Applied Mechanics,Transactions of the ASME,1981,48:97-103.
[8] HUANG X .Simulation on the process of fatigue crack initiation in a martensitic stainless steel[D].Germany:University of Kassel,2007.
[9] BERTSCH J .Mikroskopische Untersuchung der Bildung von Ermue dungsrissen an zwei ferritisch martensitischen Stae hlen im unbestrahlten und vorbestrahlten Zustand[R].Technik und Umwelt Wissenschaftliche Berichte FZKA,Institut fuer Materialforschung,Forschungs zentrum Karlsruhe,1997.
[10] GUO Z;SATO K;LEE T K.Ultrafine grain size trough thermal treatment of lath martensitic steels[A].Nashville,Tenessee,USA,2000:51-62.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%