欢迎登录材料期刊网

材料期刊网

高级检索

在1100-H14铝合金基体表面开凹槽添加Ni粉进行搅拌摩擦加工(Friction Stir Processing,FSP),利用Ni粉在搅拌过程中的碎化及其与基体的原位反应生成的高强、高硬的金属间化合物制备强化的表面复合层.结果表明,不同于添加陶瓷颗粒的FSP工艺,Ni颗粒能在搅拌过程中充分碎化,并与铝基体原位合成金属间化合物,原位自生的增强体颗粒与基体是以金属键合的方式结合在一起,因此与基体金属间具有良好的界面相容性和界面结构,能够很大程度上改善颗粒的强化效果.增强颗粒与基体结合界面的性质对复合层硬度的影响非常显著,为了提高复合层硬度,提出了通过原位反应获得颗粒/基体的高强界面的模型.

Friction stir processing (FSP) was conducted by using aluminum alloy plate 1100-H14. Prior to stiring, a rectangular groove was machined on the plate along the center of stir pass, in which nickel powder was filled. Via in-situ synthesis during the processing thermal cycle, Ni particles in Al base metal would react with Al to form hard particles of NiAl intermetallics. Thus, a composite layer would be fabricated. The results show that Ni particles were stir-crushed to pieces and NiAl_3 reactive particles, in submicron size, were formed. A portion of NiAl_3 particles were further refined by stir-crushing. The microhardness test shows evident increase of the hardness distributions in the composite layer. Compared with ceramic powders added in FSP, physical models were proposed to describe both particle-strengthing mechanisms. In-situ synthesesed intermetallic particles have the crystal boundaries to base metal with strong metallic bonds (twinned crystal boundary, for example), which makes difficulty for dislocatons to pass around that forms crystal boundary strengthing mechanism, whereas the stir-crush refined particles issue fine particle dispersive strengthing mechanism. However, in the friction stir processing by adding hard ceramics particles, much weak bonds between particles and base metal contributes little material strengthing as dislocations may easily pass around.

参考文献

[1] 武恭;姚良均;李震夏.铝及铝合金材料手册[M].北京:科学出版社,1994
[2] 刘洪喜,王浪平,王小峰,汤宝寅.LY12CZ铝合金表面等离子浸没离子注入氮层的摩擦磨损性能研究[J].摩擦学学报,2006(05):417-421.
[3] 张春华,张松,文効忠,刘常升,才庆魁.6061Al合金表面激光熔覆Ni基合金的组织及性能[J].稀有金属材料与工程,2005(05):701-704.
[4] 朱旻昊,蔡振兵,谭娟,林修洲,邓栋才.微弧氧化涂层的微动磨损行为研究[J].摩擦学学报,2006(04):306-309.
[5] Mishra RS;Ma ZY .Friction stir welding and processing[J].Materials Science & Engineering, R. Reports: A Review Journal,2005(1/2):III-0.
[6] R.S.Mishra;M.W.Mahoney .High strain rate superplasticity in a friction strip processed 7075 Al alloy[J].Scripta materialia,1999(2):163-168.
[7] Mishra RS.;Ma ZY.;Charit I. .Friction stir processing: a novel technique for fabrication of surface composite[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):307-310.
[8] Wei Wang;Qing-yu Shi;Peng Liu;Hong-ke Li;Ting Li .A novel way to produce bulk SiCp reinforced aluminum metal matrix composites by friction stir processing[J].Journal of Materials Processing Technology,2009(4):2099-2103.
[9] Morisada Y;Fujii H;Nagaoka T;Fukusumi M .Effect of friction stir processing with SiC particles on microstructure and hardness of AZ31[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2006(1-2):50-54.
[10] Manisha Dixit;Joseph W. Newkirk;Rajiv S. Mishra .Properties of friction stir-processed Al 1100-NiTi composite[J].Scripta materialia,2007(6):541-544.
[11] 钱锦文 .搅拌摩擦加工原位反应制备铝合金表面复合层的研究[D].西安:西北工业大学,2009.
[12] ASHBY M F;JONES D R H.Engineering Materials 1[M].Oxford:pergamon Press,1980:105.
[13] 阴瑜娟,赵玉厚,夏永喜.(TiB2+Al3Ti)/ZL101原位复合材料的强化机理[J].热加工工艺,2006(24):12-15.
[14] 刘智恩.材料科学基础[M].西安:西北工业大学出版社,2006
[15] MARTIN J W.Micromechanisms in particle hardened alloys[M].Cambridge:Cambridge University Press,1980
[16] C.J. Hsu;C.Y. Chang;P.W. Kao .Al-Al_3Ti nanocomposites produced in situ by friction stir processing[J].Acta materialia,2006(19):5241-5249.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%