航空材料学报, 2013, 33(1): 21-27. doi: 10.3969/j.issn.1005-5053.2013.1.004
FGH96合金包覆挤压过程数值模拟
朱兴林 1, , 刘东 2, , 杨艳慧 {"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"将84个清凉寺窑汝官瓷和钧台窑钧官瓷样品进行质子激发X射线荧光分析,得到每个样品胎和釉的7种主量化学组分.将所有样品的7种主量化学组成数据进行散布分析,以确定汝官瓷和钧官瓷原料来源是否相同.从散布分析图可以看出,汝官瓷釉和钧官瓷釉样品的原料产地和配方明显不同,汝官瓷胎和钧官瓷胎样品的原料产地和成分接近,但有所不同.","authors":[{"authorName":"邱霞","id":"c4e9b2f3-68ca-42e7-8af8-62c11bd9fbcf","originalAuthorName":"邱霞"},{"authorName":"赵维娟","id":"9a6d7b27-decc-4148-a20e-85faa608e0e3","originalAuthorName":"赵维娟"},{"authorName":"李国霞","id":"5f9726be-c62e-4875-b214-a9762cf6261e","originalAuthorName":"李国霞"},{"authorName":"郭敏","id":"aed8dd59-3835-4543-acf2-3fc47b02f191","originalAuthorName":"郭敏"},{"authorName":"谢建忠","id":"80824867-a10c-4e13-86b0-e6c79d4d4c08","originalAuthorName":"谢建忠"},{"authorName":"孙洪巍","id":"3d92a817-1180-4724-a316-9a303c8bedd2","originalAuthorName":"孙洪巍"},{"authorName":"承焕生","id":"390900ad-fa05-4057-b771-fd5a2c805f85","originalAuthorName":"承焕生"},{"authorName":"孙新民","id":"a6efd5ec-46c3-46f2-900e-ee258aa5ec06","originalAuthorName":"孙新民"},{"authorName":"赵青云","id":"f4cc1770-8ec3-4d12-a192-5c593310458a","originalAuthorName":"赵青云"},{"authorName":"赵文军","id":"530b0ba8-445d-4ff4-a137-c61d8845c609","originalAuthorName":"赵文军"},{"authorName":"鲁晓珂","id":"7c4574b8-8fe2-4c2b-8801-6a3da7b84a97","originalAuthorName":"鲁晓珂"}],"doi":"10.3969/j.issn.1007-4627.2006.03.009","fpage":"304","id":"12cbd664-a7af-4bfa-8b14-ab1f9352340c","issue":"3","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"7cb68295-a1d1-4757-95d2-986d9c36905a","keyword":"主量化学组成","originalKeyword":"主量化学组成"},{"id":"74d6699c-5394-49e6-8e3f-d79deb0799cd","keyword":"散布分析","originalKeyword":"散布分析"},{"id":"e85059ec-cdaa-470d-86cf-a6e03885f259","keyword":"质子激发X射线荧光分析","originalKeyword":"质子激发X射线荧光分析"}],"language":"zh","publisherId":"yzhwlpl200603009","title":"用主量化学组成研究汝官瓷和钧官瓷的原料来源","volume":"23","year":"2006"},{"abstractinfo":"建立微量化学-分光光度法快速测定微量砷,应用于金属锑及其氧化物中分析结果满意.","authors":[{"authorName":"傅明","id":"d1a8d3f5-4e34-4dda-9ba1-3b73286ca7b7","originalAuthorName":"傅明"},{"authorName":"陈燕","id":"1a209ee6-a1fd-4eb2-8034-945bae381ab7","originalAuthorName":"陈燕"},{"authorName":"聂洪勇","id":"1b92b808-ddb6-428c-9285-7c7c66ac8fa8","originalAuthorName":"聂洪勇"}],"doi":"10.3969/j.issn.1000-7571.2000.01.019","fpage":"50","id":"e1219cbc-9752-4352-b100-4c2e33ac48fa","issue":"1","journal":{"abbrevTitle":"YJFX","coverImgSrc":"journal/img/cover/YJFX.jpg","id":"71","issnPpub":"1000-7571","publisherId":"YJFX","title":"冶金分析 "},"keywords":[{"id":"1c70f171-2bb9-4b9b-8363-0ec14c1adf00","keyword":"锑及其氧化物","originalKeyword":"锑及其氧化物"},{"id":"0ffb8bcb-3358-4740-8bf1-04913da4b064","keyword":"砷钼蓝","originalKeyword":"砷钼蓝"},{"id":"43c8e94a-ece7-48b6-b7c2-30a207fef673","keyword":"光度法","originalKeyword":"光度法"}],"language":"zh","publisherId":"yjfx200001019","title":"微量化学法快速测定金属锑及其氧化物中微量砷","volume":"20","year":"2000"},{"abstractinfo":"研究了高、中、低3种磷含量化学镀镍层的硬度及其在不同腐蚀介质中的耐蚀性能.结果表明,随着镀层中磷含量的增加,镀层硬度减小,而且镀层达到最高硬度时的热处理温度降低;在酸性介质中,高磷镀层的耐蚀性最好,而在碱性介质中,低磷镀层的耐蚀性最好.XPS分析发现,低磷镀层在碱性介质中表面形成了一层致密的碳氧化物膜.","authors":[{"authorName":"胡信国","id":"0f5bd7ad-3ca1-43c4-a782-288d9cd3153b","originalAuthorName":"胡信国"},{"authorName":"王殿龙","id":"352ce174-53c0-493b-8097-432af329ecdd","originalAuthorName":"王殿龙"},{"authorName":"戴长松","id":"2b1a2cfb-a1ea-464a-aed1-d8732627a881","originalAuthorName":"戴长松"},{"authorName":"蔡亚光","id":"6d75489e-10c8-4aa1-960f-28e37e4ae38c","originalAuthorName":"蔡亚光"}],"doi":"10.3969/j.issn.1004-227X.2003.03.006","fpage":"18","id":"aba269df-645f-4f2c-900a-11fd441d5344","issue":"3","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"805cf602-df13-49e0-97c8-21ebd28e4f9d","keyword":"化学镀镍层","originalKeyword":"化学镀镍层"},{"id":"dc344b77-882c-408c-af35-9663427ec3c3","keyword":"磷含量","originalKeyword":"磷含量"},{"id":"583daf8f-99f7-4e2f-8d3d-1a9fbd3d195b","keyword":"硬度","originalKeyword":"硬度"},{"id":"d0f3014a-8ce8-4332-aad9-8482971ad841","keyword":"耐蚀性能","originalKeyword":"耐蚀性能"}],"language":"zh","publisherId":"ddyts200303006","title":"不同磷含量化学镀镍层的硬度和耐蚀性能","volume":"22","year":"2003"},{"abstractinfo":"采集柳林县城扬尘及空气颗粒物其他污染源(煤烟尘、土壤风沙尘、建筑水泥尘、机动车尾气尘)样品,测定了元素、离子、碳化学组分,并与其他城市的扬尘化学组分进行比较.结果表明,柳林细粒子(PM2.5)扬尘和粗粒子(PM10)扬尘的化学组成为:常量元素(32.66%、43.65%) >TC(17.49%、15.13%)>离子组分(4.68%、2.79%)>微量元素(1.52%、1.43%).柳林粗粒子扬尘化学组成与其他城市相差较大:TC含量高于其他4个城市,SO42-、Ca、Fe含量总体较低.分歧系数计算结果为:细粒子CDm,,k=0.42,粗粒子CDmk=0.46,均大于0.2,说明扬尘与土壤风沙尘的化学组成相似程度不高,受人类活动的影响较大.总之,土壤风沙尘、建筑水泥尘、煤烟尘是影响柳林扬尘的主要因素,煤炭使用、煤炭运输和机动车尾气尘对柳林扬尘也有一定影响.","authors":[{"authorName":"王海京","id":"3ae15a3e-08d2-4bfc-90a4-dc45afcb714b","originalAuthorName":"王海京"},{"authorName":"武媛媛","id":"76a67dc5-65f3-45eb-8bb2-75fd9852f0e5","originalAuthorName":"武媛媛"},{"authorName":"彭林","id":"b10dc62f-d96d-425a-987b-17fcf0cfad6d","originalAuthorName":"彭林"},{"authorName":"李颖慧","id":"3ac8e01a-35d4-4ace-a7c9-53ec0e726476","originalAuthorName":"李颖慧"},{"authorName":"李如梅","id":"d4a2371d-bec8-4b94-a323-1ccc9e029f44","originalAuthorName":"李如梅"},{"authorName":"牟玲","id":"bb60b3a8-122c-4706-aa3e-5747ed287f89","originalAuthorName":"牟玲"}],"doi":"10.7524/j.issn.0254-6108.2017.04.2016081706","fpage":"799","id":"22d0e5f0-0589-4b7e-b465-8989447a9f19","issue":"4","journal":{"abbrevTitle":"HJHX","coverImgSrc":"journal/img/cover/HJHX.jpg","id":"43","issnPpub":"0254-6108","publisherId":"HJHX","title":"环境化学 "},"keywords":[{"id":"ae9e6f91-0d5b-4136-9eff-64acd5fba1b9","keyword":"扬尘","originalKeyword":"扬尘"},{"id":"8214457b-2cf2-40ae-8b7b-8f38515bbb2a","keyword":"化学组成","originalKeyword":"化学组成"},{"id":"aa074f20-6a1f-4d95-b63b-86ce1783c05c","keyword":"分歧系数","originalKeyword":"分歧系数"}],"language":"zh","publisherId":"hjhx201704013","title":"柳林城市扬尘化学组成特征","volume":"36","year":"2017"},{"abstractinfo":"通过调整镀层厚度得到了具有不同孔隙率的Ni-P化学镀层.使用图形分析软件辅助贴滤纸法测得了镀层孔隙率,并研究了孔隙率对镀层电化学行为的影响,探讨了利用电化学测试对镀层孔隙率进行量化评价的方法.结果表明,图形分析软件可以提高贴滤纸法的准确性和可重复性,而电化学方法在测量镀层微小孔隙方面具有明显优势.极化曲线测试表明,孔隙率较小的镀层具有较高的腐蚀电位和较低的腐蚀电流密度,可根据所测曲线精确计算出镀层孔隙率.交流阻抗测试可进一步揭示孔隙率对镀层腐蚀机理的影响,存在孔隙的镀层其交流阻抗谱会表现双时间常数的特征,通过拟合所得电化学参数可以用来评价镀层孔隙率大小.","authors":[{"authorName":"徐扬","id":"b456fca8-b7c9-4ea0-b039-1848def0c3d3","originalAuthorName":"徐扬"},{"authorName":"邹勇","id":"facc2779-6a07-497c-b1d5-f0dd2a2060ce","originalAuthorName":"邹勇"},{"authorName":"栾涛","id":"638547ef-e010-4cfe-bba7-be926d23cd5a","originalAuthorName":"栾涛"}],"doi":"","fpage":"902","id":"f580e40b-8ba9-4645-908d-af1551151dff","issue":"6","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"ff74368e-d3af-4fee-8587-3891ffa81e79","keyword":"化学镀","originalKeyword":"化学镀"},{"id":"d68f4d84-fd97-45bd-9b35-e87f4bc7997a","keyword":"Ni-P","originalKeyword":"Ni-P"},{"id":"d0bc3002-a415-4c90-915c-5773ce03fb69","keyword":"孔隙率","originalKeyword":"孔隙率"},{"id":"b2338da2-edc0-40a6-9e63-1c0486cd0850","keyword":"极化曲线","originalKeyword":"极化曲线"},{"id":"2edb5cee-63a0-44dd-ab66-f1f7baf5b2ec","keyword":"交流阻抗","originalKeyword":"交流阻抗"}],"language":"zh","publisherId":"gncl201306034","title":"化学镀镀层孔隙率对电化学行为的影响及其量化评价","volume":"44","year":"2013"},{"abstractinfo":"含镍10%~15%的锌镍合金镀层具有高的耐腐蚀性和低氢脆性,近年来一直是人们关注的热点.影响锌镍合金镀层结构和性能的关键是镀层中的镍含量,为方便锌镍合金的研究以及工厂生产应用,本工作探索出一种简便的锌镍合金镀层镍含量化学分析方法,即化学沉淀法,相比能谱法、分光光度法对锌镍合金镀层镍含量的分析,此方法具有准确可靠和方便快捷的特点.","authors":[{"authorName":"魏由洋","id":"43930441-e6b8-4f33-b7da-43c3971d8f14","originalAuthorName":"魏由洋"},{"authorName":"刘慧丛","id":"59642865-10c1-4ae2-8bfa-7d148decccec","originalAuthorName":"刘慧丛"},{"authorName":"李卫平","id":"2dd7e55c-d885-46bb-9835-5b31111722f0","originalAuthorName":"李卫平"},{"authorName":"朱立群","id":"a2c5a3b6-d2e1-43de-83d3-8daced4e734c","originalAuthorName":"朱立群"}],"doi":"","fpage":"307","id":"1af2d7c7-86c9-45e3-ad17-ef03b13a366e","issue":"4","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"498a216e-30ae-45b7-86c0-2b572c7944df","keyword":"化学分析方法","originalKeyword":"化学分析方法"},{"id":"70eafa17-b40b-4fd8-bd08-7965ce9e6476","keyword":"镀层镍含量","originalKeyword":"镀层镍含量"},{"id":"e9a62ffd-8a24-4819-9238-b36e8aff9d43","keyword":"锌镍合金","originalKeyword":"锌镍合金"}],"language":"zh","publisherId":"fsyfh201004015","title":"一种简便的锌镍合金镀层镍含量化学分析方法","volume":"31","year":"2010"},{"abstractinfo":"采用高温平衡电导法测定了高温平衡电导率随氧分压(10-12~105Pa)的变化曲线, 由此确定了未掺杂和Al受主掺杂BaPbO3陶瓷多晶体中的主导缺陷及其电荷补偿缺陷. 同时讨论了受主掺杂浓度对材料的高温平衡电导率、高氧分压和低氧分压下主导缺陷转变点的影响, 确定了受主掺杂BaPbO3缺陷行为随掺杂量的变化机理. 在高氧分压下, 材料表现出本征缺陷行为, Pb离子空位占主导, 电荷补偿缺陷为空穴; 随着氧分压的下降, 材料由本征缺陷控制区域进入非本征缺陷控制区域, 受主杂质取代Pb离子空位占主导; 在低氧分压区域, 随着氧离子空位浓度的上升, 氧离子空位取代空穴, 成为受主杂质的电荷补偿缺陷.","authors":[{"authorName":"陆裕东","id":"c181d3cc-6b70-499e-850f-13d759095c8f","originalAuthorName":"陆裕东"},{"authorName":"王歆","id":"fa748876-6c26-40a3-abd5-0ff1bb3dca50","originalAuthorName":"王歆"},{"authorName":"庄志强","id":"f088b82d-986d-4895-9098-5c32059f5fec","originalAuthorName":"庄志强"},{"authorName":"刘保岭","id":"7294e0e7-0de5-4f1b-bc57-0a9e01a7b912","originalAuthorName":"刘保岭"},{"authorName":"刘勇","id":"a204c4d4-ba2d-4731-8e6e-7fb3d0036d38","originalAuthorName":"刘勇"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2007.00811","fpage":"811","id":"9c9b162e-a421-4f33-b1ba-63dd6489d56e","issue":"5","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"9770940d-0367-4d17-82ce-4eb2d80b901d","keyword":"BaPbO3","originalKeyword":"BaPbO3"},{"id":"0e19613e-53c6-4720-a5dd-b719c30fc674","keyword":" defect chemistry","originalKeyword":" defect chemistry"},{"id":"14f23b39-933b-481d-aede-fab547a95959","keyword":" nonstoichiometry","originalKeyword":" nonstoichiometry"},{"id":"b432d2b8-47e4-4db8-ab9e-ef0be2dea62a","keyword":" acceptor","originalKeyword":" acceptor"}],"language":"zh","publisherId":"1000-324X_2007_5_10","title":"受主掺杂 BaPbO3中的非化学计量比","volume":"22","year":"2007"},{"abstractinfo":"采用高温平衡电导法测定了高温平衡电导率随氧分压(10-12~105Pa)的变化曲线,由此确定了未掺杂和Al受主掺杂BaPbO3陶瓷多晶体中的主导缺陷及其电荷补偿缺陷.同时讨论了受主掺杂浓度对材料的高温平衡电导率、高氧分压和低氧分压下主导缺陷转变点的影响,确定了受主掺杂BaPbO3缺陷行为随掺杂量的变化机理.在高氧分压下,材料表现出本征缺陷行为,Pb离子空位占主导,电荷补偿缺陷为空穴;随着氧分压的下降,材料由本征缺陷控制区域进入非本征缺陷控制区域,受主杂质取代Pb离子空位占主导;在低氧分压区域,随着氧离子空位浓度的上升,氧离子空位取代空穴,成为受主杂质的电荷补偿缺陷.","authors":[{"authorName":"陆裕东","id":"4d0aca7a-1a86-429f-9396-07555f24e94f","originalAuthorName":"陆裕东"},{"authorName":"王歆","id":"08ca073d-e8b9-4924-8e5b-ac67fe53947d","originalAuthorName":"王歆"},{"authorName":"庄志强","id":"6b3f39fd-1231-4d34-84c4-39a11aa0593e","originalAuthorName":"庄志强"},{"authorName":"刘保岭","id":"5af79d24-3e6d-4545-a83c-f4944f1d98a1","originalAuthorName":"刘保岭"},{"authorName":"刘勇","id":"ed705dfb-037d-4f64-8703-7fd0a2b7d464","originalAuthorName":"刘勇"}],"doi":"10.3321/j.issn:1000-324x.2007.05.008","fpage":"811","id":"4c75479f-be68-4cdd-8cda-73ef41aa8337","issue":"5","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"4e69e47f-98cf-4754-a0f5-da0a8d4134b9","keyword":"BaPbO3","originalKeyword":"BaPbO3"},{"id":"d591a53c-6ddb-4720-835e-c671bbb6d5dd","keyword":"缺陷化学","originalKeyword":"缺陷化学"},{"id":"1d9d9c81-7eb5-4576-bf2d-5f83e1cd5154","keyword":"非化学计量比","originalKeyword":"非化学计量比"},{"id":"aa76babb-9403-46ab-8bfd-6ef26a95bda7","keyword":"受主","originalKeyword":"受主"}],"language":"zh","publisherId":"wjclxb200705008","title":"受主掺杂BaPbO3中的非化学计量比","volume":"22","year":"2007"},{"abstractinfo":"为了比较镁合金化学镀镍中主盐性质的影响,分别采用硫酸镍(NiSO4·6H2O)和碱式碳酸镍[NiCO3·2Ni(OH)2·2H2O]为主盐对AZ91D镁合金进行化学镀镍.采用扫描电镜(SEM)比较了镀层的表面形貌和组织结构,用能谱(EDS)对2种主盐所得镀层进行成分分析,采用中性盐雾试验比较了不同主盐化学镀镍后镀层的耐腐蚀性,并通过热震和锉刀试验比较两者的结合力,最后在3.5%NaCl溶液中进行动电位极化曲线测试.结果表明,碱式碳酸镍作为镁合金化学镀主盐所得的镀层为高磷镀层,且致密性、耐腐蚀性和结合力均好于硫酸镍作为主盐的镀液.","authors":[{"authorName":"李东栋","id":"2add38b0-12d6-4404-9c33-39ac9eeef6c1","originalAuthorName":"李东栋"},{"authorName":"王凤平","id":"ebf246d2-5846-471d-9307-8dbb5c40f2c2","originalAuthorName":"王凤平"}],"doi":"","fpage":"37","id":"eff2180a-eab5-4b1a-8672-05897bda90a0","issue":"7","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"547801bf-f1c7-4c9b-84f1-08c8355f689e","keyword":"化学镀镍","originalKeyword":"化学镀镍"},{"id":"d6882ad9-3ba2-4c41-9807-a7ac385104bd","keyword":"镁合金","originalKeyword":"镁合金"},{"id":"c7f3afc4-e08a-4418-957b-1fd9028c0823","keyword":"主盐性质","originalKeyword":"主盐性质"}],"language":"zh","publisherId":"clbh200807013","title":"硫酸镍和碱式碳酸镍主盐对镁合金化学镀镍的影响","volume":"41","year":"2008"},{"abstractinfo":"从化学组成出发,通过理论计算,确定调节材料的种类和掺量,使得重构钢渣的化学成分与水泥熟料接近,模拟熟料煅烧制度对钢渣进行重构.结果表明:当C/S较低时,原钢渣中C3S在重构过程中分解成C2S,RO相部分分解,Fe元素主要以Fe3O4存在,并形成以MgO为主、含有少量FeO的固溶体,液相量少;当C/S较高时,形成晶形良好的C3S和C2S,RO相完全分解,其中的FeO生成C4AF、C2F,MgO主要以MgO晶体存在液相量多,液相以铁铝酸钙为主.由于Al2O3含量低,矿物组成中未见C3A.仿熟料重构钢渣不会产生安定性不良且胶凝活性明显提高.","authors":[{"authorName":"郭辉","id":"67eff21f-199e-4d17-ab45-f82e53f241fd","originalAuthorName":"郭辉"},{"authorName":"殷素红","id":"66bf2155-1eae-4da4-994d-69f8a4ea539c","originalAuthorName":"殷素红"},{"authorName":"余其俊","id":"6e4c7636-4707-4d59-855f-9287122c89bd","originalAuthorName":"余其俊"},{"authorName":"杨旭","id":"d31ca7fd-d1ae-4776-8a6b-1d88add52182","originalAuthorName":"杨旭"}],"doi":"","fpage":"819","id":"1dff5aa1-598f-477a-9fba-5ed4cc62830a","issue":"3","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"2b4f6236-a4eb-427f-99cf-bf0bc031c700","keyword":"钢渣重构","originalKeyword":"钢渣重构"},{"id":"2c163bd9-22ad-4445-9e93-98d7991ff69e","keyword":"仿熟料化学组成","originalKeyword":"仿熟料化学组成"},{"id":"671ecc3a-c57f-4bf2-8a3c-c6b265a29f6a","keyword":"矿物组成","originalKeyword":"矿物组成"},{"id":"0a890d6a-449c-4674-b8a4-3043e316f2ab","keyword":"胶凝活性","originalKeyword":"胶凝活性"}],"language":"zh","publisherId":"gsytb201603028","title":"仿水泥熟料化学组成重构钢渣研究","volume":"35","year":"2016"}],"totalpage":4655,"totalrecord":46543}