欢迎登录材料期刊网

材料期刊网

高级检索

利用分离式Hopkinson拉杆设备对五种航空常用铝合金2A12-CZ,2A12-M,2024-T351,7050-T74,7050-T7451进行了室温动态拉伸力学性能探究,并利用电子万能试验机对这五种材料进行了准静态拉伸力学性能测试,得到了五种铝合金在不同应变率下的拉伸真实应力应变曲线.试验结果显示:7050系列铝合金有较高的屈服强度,2A12M抗拉强度则最低.五种航空铝合金都表现出不同程度的正的应变率敏感效应,其中2A12-CZ敏感性最强,7050T7451敏感性最弱.五种铝合金动态拉伸失效应变明显大于准静态拉伸失效应变.2A12M与2024T351有较高的动态拉伸失效应变.在试验结果的基础上,选择Johnson-Cook本构模型,Cowper-Symonds本构模型来拟合这五种材料的动态本构,模型预测与试验结果吻合较好.

参考文献

[1] 刘兵,彭超群,王日初,王小锋,李婷婷.大飞机用铝合金的研究现状及展望[J].中国有色金属学报,2010(09):1705-1715.
[2] 郭伟国;李玉龙;索涛.应力波基础简明教程[M].西安:西北工业大学出版社,2006:1.
[3] 周培基;霍普金森AK.材料对强冲击载荷的动态响应[M].北京:科学出版社,1985
[4] MUKAI T;ISHKAWA K;HIGANGSHI K.Influence of strain rate on the mechanical properties in fine-grained aluminium alloys[J].Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing,1995:12-18.
[5] SMERD R;WINKLER S;SALISBURY C.High strain rate tensile testing of automotive aluminium alloy sheet[J].International Journal of Impact Engineering,2005(32):541-560.
[6] L. Djapic Oosterkamp;A. Ivankovic;G. Venizelos .High strain rate properties of selected aluminium alloys[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2000(1/2):225-235.
[7] 郭伟国,田宏伟.几种典型铝合金应变率敏感性及其塑性流动本构模型[J].中国有色金属学报,2009(01):56-61.
[8] Kaiping Peng;Wenzhe Chen;Kuangwu Qian .Study on dynamic strain aging phenomenon of 3004 aluminum alloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2006(1/2):53-58.
[9] Shi, XL;Mishra, RS;Watson, TJ .Effect of temperature and strain rate on tensile behavior of ultrafine-grained aluminum alloys[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,2008(1/2):247-252.
[10] 赵寿根,何著,杨嘉陵,程伟.几种航空铝材动态力学性能实验[J].北京航空航天大学学报,2007(08):982-985.
[11] 王礼立,王永刚.应力波在用SHPB研究材料动态本构特性中的重要作用[J].爆炸与冲击,2005(01):17-25.
[12] 郑修麟.材料的力学性能[M].西安:西北工业大学出版社,1999:8.
[13] 李娜,李玉龙,郭伟国.3种铝合金材料动态性能及其温度相关性对比研究[J].航空学报,2008(04):903-908.
[14] 陈德民,王刚,孙剑飞,沈军.高应变速率下钨丝增强锆基块体非晶合金复合材料的变形行为[J].金属学报,2006(09):1003-1008.
[15] Q. Wei;S. Cheng;K.T. Ramesh;E. Ma .Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2004(1/2):71-79.
[16] HART E W.Theory of the tensile test[J].Acta Metallurgica,1967(15):351-355.
[17] Shi, XL;Mishra, RS;Watson, TJ .Effect of temperature and strain rate on tensile behavior of ultrafine-grained aluminum alloys[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,2008(1/2):247-252.
[18] JOHNSON G R;COOK W H.A constitutive model and data for metals subjected to large strains,high strain rates and high temperatures[M].Hague:The Netherlands Publishers,1983:541-547.
[19] LIANG R O;KHAN A S .A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures[J].International Journal of Plasticity,1999,15:963-980.
[20] 陈志坚,袁建红,赵耀.450MPa级船用钢冲击实验研究及Cowper-Symonds本构模型[J].船舶力学,2007(06):933-941.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%