欢迎登录材料期刊网

材料期刊网

高级检索

对2618铝合金进行了(1)固溶处理+峰值时效处理(T6),(2)固溶处理+ ECAP+峰值时效处理,(3)固溶处理+ ECAP+短时再结晶+峰值时效处理;采用光学显微镜对2618合金的晶粒组织进行了观察与分析;采用拉伸试验机对2618合金峰值时效处理后的力学性能进行了测试.研究结果表明,采用固溶处理+ ECAP+短时再结晶+峰值时效处理能明显细化2618耐热铝合金的晶粒组织,有效提高该合金的综合力学性能;该新型形变热处理工艺是一种行之有效的2618铝合金强韧化方法.

参考文献

[1] 刘晓艳,潘清林,曹素芳,陆智伦,何运斌,李文斌.应力时效对Al-Cu-Mg-Ag耐热铝合金组织与性能的影响[J].航空材料学报,2010(05):8-13.
[2] 张坤,戴圣龙,杨守杰,黄敏,颜鸣皋.Al-Cu-Mg-Ag系新型耐热铝合金研究进展[J].航空材料学报,2006(03):251-257.
[3] 潘复生;张丁非.铝合金及应用[M].北京:化学工业出版社,2006:300.
[4] Cerri E.;Forcellese A.;Mcqueen HJ.;Evangelista E. .COMPARATIVE HOT WORKABILITY OF 7012 AND 7075 ALLOYS AFTER DIFFERENT PRETREATMENTS[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,1995(2):181-198.
[5] WOUTERS P;VERLINDEN B;MCQUEEN H J et al.Effect of homogenization and precipitation treatments on the hot workability of an aluminium alloy AA2024[J].Materials Science and Engineering A,1990,123(02):239-245.
[6] VALIEV R Z;ALEXANDROV I V;ZHU Y T et al.Paradox of Strength and Ductility in Metals Processed Bysevere Plastic Deformation[J].Journal of Materials and Research,2002,17(01):5-8.
[7] ZHU Y T;LIAO X Z .Nonosturctured metals:Retaining ductility[J].Nature Materials,2004,3:351-352.
[8] SWYGENHOVEN H V;WEERTMAN J R .Preface to the viewpoint set on:mechanical properties of fully dense nanocrystalline metals[J].Scripta Materialia,2003,49(07):625-627.
[9] Budrovic Z;Van Swygenhoven H;Derlet PM;Van Petegem S;Schmitt B .Plastic deformation with reversible peak broadening in nanocrystalline nickel[J].Science,2004(5668):273-276.
[10] WANG Y M;MA E;CHEN M W .Enhanced tensile ductility and toughness in nonostructured Cu[J].Applied Physics Letters,2002,80(13):2395-2397.
[11] S. Cheng;E. Ma;Y. M. Wang .Tensile properties of in situ consolidated nanocrystalline Cu[J].Acta materialia,2005(5):1521-1533.
[12] Youssef KM;Scattergood RO;Murty KL;Horton JA;Koch CC .Ultrahigh strength and high ductility of bulk nanocrystalline copper[J].Applied physics letters,2005(9):1904-1-1904-3-0.
[13] Zenji Horita;Kunihiro Ohashi;Takeshi Fujita;Kenji Kaneko;Terence G. Langdon .Achieving High Strength and High Ductility in Precipitation-Hardened Alloys[J].Advanced Materials,2005(13):1599-1602.
[14] Y. H. Zhao;Y. T. Zhu;X. Z. Liao;Z. Horita;T. G. Langdon .Tailoring stacking fault energy for high ductility and high strength in ultrafine grained Cu and its alloy[J].Applied physics letters,2006(12):121906-1-121906-3-0.
[15] HORITA Z;FUJINAMI T;LANGDON T G .The potential for scaling ECAP:effect of sample size on grain refinement and mechanical properties[J].Materials:Science and Engineering (A),2001,318(1/2):34-41.
[16] KIM J K;JEONG H G;HONG S I et al.Effect of aging treatment on heavily deformed microstructure of a 6061 aluminum alloy after equal channel angular pressing[J].Scripta Materialia,2001,45(08):901-907.
[17] W. J. Kim;C. S. Chung;D. S. Ma;S. I. Hong;H. K. Kim .Optimization of strength and ductility of 2024 Al by equal channel angular pressing (ECAP) and post-ECAP aging[J].Scripta materialia,2003(4):333-338.
[18] J. Mao;S.B. Kang;J.O. Park .Grain refinement, thermal stability and tensile properties of 2024 aluminum alloy after equal-channel angular pressing[J].Journal of Materials Processing Technology,2005(3):314-320.
[19] W.J. Kim;J.K. Kim;H.K. Kim .Effect of post equal-channel-angular-pressing aging on the modified 7075 Al alloy containing Sc[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2008(1/2):222-228.
[20] Valiev RZ.;Alexandrov IV.;Islamgaliev RK. .Bulk nanostructured materials from severe plastic deformation [Review][J].Progress in materials science,2000(2):103-189.
[21] Z. Horita;T. Fujinami;M. Nemoto;T. G. Langdon .Improvement of mechanical properties for Al alloys using equal-channel angular pressing[J].Journal of Materials Processing Technology,2001(3):288-292.
[22] Segal VM. .MATERIALS PROCESSING BY SIMPLE SHEAR[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,1995(2):157-164.
[23] Y.Iwahashi;Z.Horita;M.Nemoto .An investigation of microstructural evolution during equal-channel angular pressing[J].Acta materialia,1997(11):4733-4741.
[24] K. Matsuki;T. Aida .MICROSTRUCTURAL CHARACTERISTICS AND SUPERPLASTIC-LIKE BEHAVIOR IN ALUMINUM POWDER ALLOY CONSOLIDATED BY EQUAL-CHANNEL ANGULAR PRESSING[J].Acta materialia,2000(10):2625-2632.
[25] SHANMUGA SUNDARAM T;MURTY B S;SARMA V S .Development of ultrafine grained high strength Al-Cu alloy by cryorolling[J].Scripta Materialia,2006,54(12):2013-2017.
[26] 王建华,易丹青,苏旭平,王鑫铭.Al3Fe和Al9FeNi相在铝合金熔体中的溶解动力学[J].中国有色金属学报,2007(04):591-595.
[27] 王建华,易丹青,陈康华,卢斌,刘沙.熔铸工艺对2618合金中Al9FeNi相形态的影响[J].中国有色金属学报,2001(02):206-210.
[28] 王建华,易丹青,陈康华.形变热处理对2618铝合金性能的影响[J].热加工工艺,2001(02):13-14.
[29] 王建华,易丹青,苏旭平,尹付成,王鑫铭.2618铝合金形变热处理组织与热力学分析[J].特种铸造及有色合金,2007(04):247-249.
[30] F. Novy;M. Janecek;R. Kral .Microstructure changes in a 2618 aluminium alloy during ageing and creep[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2009(1/2):146-151.
[31] 余忠土,张恒华,孙保良,邵光杰.铝合金T6处理时固溶时间的优化[J].热处理,2009(05):17-20.
[32] K. XIA;J. WANG .Shear, Principal, and Equivalent Strains in Equal-Channel Angular Deformation[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,2001(10):2639-2647.
[33] Valiev RZ.;Alexandrov IV.;Islamgaliev RK. .Bulk nanostructured materials from severe plastic deformation [Review][J].Progress in materials science,2000(2):103-189.
[34] PANIGRAHI S K;JAYAGANTHAN R.A .Study on the combined treatment of cryorolling,short-annealing,and aging for the development of ultrafine-grained A1 6063Alloy with enhanced strenth and ductility[J].Metallurgical and Materials Transactions (A),2010,41(10):2675-2690.
[35] ZHENG L J;LI H X;HASHMI M F et al.Evolution of microstructure and strengthening of 7050 A1 alloy by ECAP combined with heat-treatment[J].Journal of Materials Processing Technology,2006,171(01):100-107.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%