欢迎登录材料期刊网

材料期刊网

高级检索

从影响热生长氧化层(TGO)变形的因素、计算模型和计算方法方面综述国内外学者近年来在热生长氧化层变形和应力方面的研究成果.详细评述热膨胀失配、蠕变、TGO生长、黏结层相变和界面形貌等因素对TGO变形和应力的影响,并介绍目前研究TGO变形和应力的主要方法和计算模型.提出:基于内聚力模型(CZM)的扩展有限元方法(X-FEM)、(扩展)Voronoi有限元模型可以解决基于传统有限元方法和断裂力学方法在研究TGO裂纹扩展问题、获取TGO临界断裂参数等方面存在的困难,是一种有前途的研究TGO变形、应力及裂纹问题的方法.

参考文献

[1] 郑蕾,郭洪波,郭磊,彭徽,宫声凯,徐惠彬.新一代超高温热障涂层研究[J].航空材料学报,2012(06):14-24.
[2] 梁春华,李晓欣.先进材料在战斗机发动机上的应用与研究趋势[J].航空材料学报,2012(06):32-36.
[3] 蔡妍,易军,陆峰,陶春虎.热障涂层金属元素扩散阻挡层研究进展[J].材料工程,2011(09):92-96.
[4] SHEFFLER K D.Current status and future trends in turbine application of thermal barrier[J].ASME Journal of Engine for Gas Turbine and Power,1988:110-605.
[5] 马维,潘文霞,吴承康.热障涂层材料性能和失效机理研究进展[J].力学进展,2003(04):548-559.
[6] A. G. Evans;D. R. Mumm;J. W. Hutchinson;G. H. Meier;F. S. Pettit .Mechanisms controlling the durability of thermal barrier coatings[J].Progress in materials science,2001(5):505-553.
[7] MILLER R A .Current status of thermal barrier coatings:an overview[J].Surface and Coatings Technology,1987,30(01):1-11.
[8] MUMM D R;EVANS A G.Mechanisms controlling the performance and durability of thermal barrier coatings[J].Key Engineering Materials,2001:197-199.
[9] ZHU D M;MILLER R A .Thermal and Environmental Barrier Coatings for Advanced Turbine Engine Applications[R].NASA/TM 2005-213437[R].Boston,United Stated:NASA,2005.
[10] Nitin P. Padture;Maurice Gell;Eric H. Jordan .Thermal Barrier Coatings for Gas-Turbine Engine Applications[J].Science,2002(5566):280-284.
[11] LEVI C G .Emerging materials and processes for thermal barrier systems[J].Current Opinion in Solid State and Materials Science,2004,8(01):77-91.
[12] REBOLLO N R;HE M Y;LEVI C G et al.Mechanisms governing the distortion of alumina forming alloys upon cyclic oxidation[J].Zeitschrift fur Metallkunde,2003,94(03):171-179.
[13] DEMASI MARCIN J T;GUPTA D K .Protective coatings in the gas turbine engine[J].Surface and Coatings Technology,1994,68/69:1-9.
[14] STRANGEMAN T E .Thermal barrier coatings for turbine airfoils[J].Thin Solid Films,1985,127(1/2):93-106.
[15] DAVIS A W .The cyclic distortion of thermally grown oxides[D].Princeton:Princeton University,2005.
[16] D. S. Balint;J. W. Hutchinson .Undulation instability of a compressed elastic film on a nonlinear creeping substrate[J].Acta materialia,2003(13):3965-3983.
[17] J.Rosler;M.Baker;M.Volgmann .STRESS STATE AND FAILURE MECHANISMS OF THERMAL BARRIER COATINGS: ROLE OF CREEP IN THERMALLY GROWN OXIDE[J].Acta materialia,2001(18):3659-3670.
[18] J. Schwarzer;D. Loehe;O. Voehringer .Influence of the TGO creep behavior on delamination stress development in thermal barrier coating systems[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2004(0):692-695.
[19] R(O)SLER J;B(A)KER M;AUFZUG K .A parametric study of the stress state of thermal barrier coatings-part Ⅰ:creep relaxation[J].Acta Materialia,2004,52:4809-4817.
[20] Seo, D;Ogawa, K;Nakao, Y;Miura, H;Shoji, T .Influence of high-temperature creep stress on growth of thermally grown oxide in thermal barrier coatings[J].Surface & Coatings Technology,2009(14):1979-1983.
[21] Kang KJ;Mercer C .Creep properties of a thermally grown alumina[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2008(1/2):154-162.
[22] S.K. Sharma;G.D. Ko;K.J. Kang .High temperature creep and tensile properties of alumina formed on Fecralloy foils doped with yttrium[J].Journal of the European Ceramic Society,2009(3):355-362.
[23] STOTT F H .The oxidation of alumina-forming alloys[J].Mat Science Forum,1997,9:251-254.
[24] Laxman S.;Franke B.;Kempshall BW.;Sohn YH.;Giannuzzi LA.;Murphy KS. .Phase transformations of thermally grown oxide on (Ni,Pt)Al bondcoat during electron beam physical vapor deposition and subsequent oxidation[J].Surface & Coatings Technology,2004(0):121-130.
[25] CANNON R M;RHODES W H;HEUER A H .Plastic deformation of fine-grained alumina (Al2O3) Ⅰ:interfacecontrolled diffusional creep[J].Journal of the American Ceramic Society,1980,63:46.
[26] Junghyun Cho;Martin P.harmer;Helen M.Chan .effect of yttrium and lanthanum on the tensile creep behavior of aluminum oxide[J].Journal of the American Ceramic Society,1997(4):1013-1017.
[27] FANG J;THOMPSON A M;HARMER M P et al.Effect of yttrium and lanthanum on the final-stage sintering behavior of ultrahigh-purity alumina[J].Journal of the American Ceramic Society,1997,80:2005.
[28] TOLPYGO V K;CLARKE D R.Microstructural evidence for counter-diffusion of aluminum and oxygen during the growth of alumina scales[A].,2002
[29] RHINES F N;WOLF J S .The role of oxide microstructure and growth stresses in the high-temperature scaling of nickel[J].Met MatTrans,1970,1:1701-1710.
[30] EVANS A G;CANNON R M .Stresses in oxide films and relationships with cracking and spalling[J].Materials Science Forum,1989,43:243-268.
[31] David R. Clarke .Stress generation during high-temperature oxidation of metallic alloys[J].Current opinion in solid state & materials science,2002(3):237-244.
[32] R. Krishnamurthy;D. J. Srolovitz .Stress distributions in growing oxide films[J].Acta materialia,2003(8):2171-2190.
[33] TOLPYGO V K;DRYDEN J R;CLARKE D R .Determination of the growth stress and strain in α-Al2O3 scales during the oxidation of Fe-22Cr-4.8Al-0.3Y alloy[J].Acta Materialia,1998,46:927.
[34] J. A. Nychka;C. Pullen;M. Y. He;D. R. Clarke .Surface oxide cracking associated with oxidation-induced grain boundary sliding in the underlying alloy[J].Acta materialia,2004(5):1097-1105.
[35] WRIGHT J K;WILLIAMSON R L;CANNON R M .Finite element analysis of the effects of corners on residual stresses in protective oxide scales[J].Mat Sci Eng (A),1997,230:202.
[36] RENUSCH D;MURALIDHARAN G;URAN S et al.Effect of edges and corners on stresses in thermally grown alumina scales[J].Oxidation of Metals,2000,53:171.
[37] Krishnakumar Vaidyanathan;Eric H. Jordan;Maurice Gell .Surface geometry and strain energy effects in the failure of a (Ni, Pt)Al/EB-PVD thermal barrier coating[J].Acta materialia,2004(5):1107-1115.
[38] D. R. Clarke .The lateral growth strain accompanying the formation of a thermally grown oxide[J].Acta materialia,2003(5):1393-1407.
[39] TOLPYGO V K;CLARKE D R .Competition between stress generation and relaxation during oxidation of an FeCr-Al-Y alloy[J].Oxidation of Metals,1998,49:187.
[40] MA Q;CLARKE D R .Piezospectroscopic determination of residual stresses in polycrystalline alumina[J].Journal of the American Ceramic Society,1994,77:298-302.
[41] CHRISTENSON R J;LIPKIN D M;CLARKE D R et al.Nondestructive evaluation of the oxidation stresses through thermal barrier coatings using Cr3 + piezospectroscopy[J].Applied Physics Letters,1996,69:3754.
[42] D. M. Lipkin;D. R. Clarke .Measurement of the Stress in Oxide Scales Formed by Oxidation of Alumina-Forming Alloys[J].Oxidation of Metals,1996(3/4):267-280.
[43] SCHUMANN E;SARIOGLU C;BLACHERE J R et al.High temperature stress measurements during the oxidation of NiAl[J].Oxidation of Metals,2000,53:259-271.
[44] Tolpygo V.K.;Clarke D.R. .SURFACE RUMPLING OF A (Ni, Pt)Al BOND COAT INDUCED BY CYCLIC OXIDATION[J].Acta materialia,2000(13):3283-3293.
[45] Chen MW.;Ott R.;Hufnagel TC.;Wright PK.;Hemker KJ. .Microstructural evolution of platinum modified nickel aluminide bond coat during thermal cycling[J].Surface & Coatings Technology,2003(0):25-30.
[46] H.J. Kim;M.E. Walter .Characterization of the degraded microstructures of a platinum aluminide coating[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):7-17.
[47] D. R. MUMM;A. G. EVANS;I. T. SPITSBERG .CHARACTERIZATION OF A CYCLIC DISPLACEMENT INSTABILITY FOR A THERMALLY GROWN OXIDE IN A THERMAL BARRIER SYSTEM[J].Acta materialia,2001(12):2329-2340.
[48] Darzens S.;Karlsson AM. .On the microstructural development in platinum-modified nickel-aluminide bond coats[J].Surface & Coatings Technology,2004(0):108-112.
[49] PAYNE J E;DESAI P D.Properties of Intermetallic Alloys Vol,1:Aluminides[M].West Lafayette,Indiana:Purdue University Press,1994
[50] AU Y K;WAYMAN C M .Thermoelastic behavior of the martensitic transformation in 3 NiA1 alloys[J].Scripta Metallurgica,1972,6:1209.
[51] TOLPYGO V K;CLARKE D R .On the rumpling mechanism in nickel-aluminide coatings-part Ⅰ:An experimental assessment[J].Acta Materialia,2004,52:5115-5127.
[52] CHEN M W;GLYNN M L;OTT R T et al.HEMKER.Characterization and modeling of a martensitic transformation in a platinum modified diffusion aluminide bond coat for thermal barrier coatings[J].Acta Materialia,2003,51:4279-4294.
[53] Zhang Y.;Haynes JA.;Pint BA.;Wright IG.;Lee WY. .Martensitic transformation in CVD NiAl and (Ni,Pt)Al bond coatings[J].Surface & Coatings Technology,2003(0):19-24.
[54] GELL M;JORDAN E;VAIDYANATHAN K et al.Bond strength,bond stress and spallation mechanisms of thermal barrier coatings[J].Surface and Coatings Technology,1999,120-121:53.
[55] TOLPYGO V K;CLARKE D R;MURPHY K S .The effect of grit blasting on the oxidation behavior of a platinum-modified nickel-aluminide coating[J].Met Mat Trans (A),2001,32:1467.
[56] Xie LD.;Sohn YH.;Jordan EH.;Gell M. .The effect of bond coat grit blasting on the durability and thermally grown oxide stress in an electron beam physical vapor deposited thermal barrier coating[J].Surface & Coatings Technology,2003(1):57-66.
[57] Spitsberg IT;Mumm DR;Evans AG .On the failure mechanisms of thermal barrier coatings with diffusion aluminide bond coatings[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2005(1/2):176-191.
[58] RUUD J A;BARTZ A;BOROM M P et al.Strength degradation and failure mechanisms of electron-beam physicalvapor-deposited thermal barrier coatings[J].Journal of the American Ceramic Society,2001,84:1545.
[59] Lau H.;Leyens C.;Schulz U.;Friedrich C. .Influence of bondcoat pre-treatment and surface topology on the lifetime of EB-PVD TBCs[J].Surface & Coatings Technology,2003(3):217-223.
[60] GELL M;VAIDYANATHAN K;BARBER B et al.Mechanism of spallation in platinum aluminide/electron beam physical vapor-deposited thermal barrier coatings[J].Met MatTrans (A),1999,30:427.
[61] TOLPYGO V K .The morphology of thermally grown α-Al2O3 scales on Fe-Cr-Al alloys[J].Oxidation of Metals,1999,51:449.
[62] CHAO J;GONZALEZ-CARRASCO J L .The role of the surface roughness on the integrity of thermally generated oxide scales:application to the Al2O3/MA956 system[J].Mat Sci Eng (A),1997,230:39-48.
[63] M. Y. He;A. G. Evans .THE RATCHETING OF COMPRESSED THERMALLY GROWN THIN FILMS ON DUCTILE SUBSTRATES[J].Acta materialia,2000(10):2593-2601.
[64] K.-J. Kang;J. W. Hutchinson;A. G. Evans .Measurement of the strains induced upon thermal oxidation of an alumina-forming alloy[J].Acta materialia,2003(5):1283-1291.
[65] EVANS A G;HE M Y;HUTCHINSON J W .Mechanicsbased scaling laws for the durability of thermal barrier coatings[J].Progress in Materials Science,2001,46:249.
[66] GONG X Y;CLARKE D R .On the measurement of strain in coatings formed on a wrinkled elastic substrate[J].Oxidation of Metals,1998,50:355-376.
[67] Wright JK;Renusch D;Veal B;Grimsditch M;Hou PY;Cannon RM;Williamson RL .Residual stresses in convoluted oxide scales[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,1999(1/2):246-255.
[68] A.M.Huntz;K.Messaoudi .Residual stresses in alumina scales. Experiments, modeling, and stress-relaxation phenomena[J].Oxidation of Metals,2000(1/2):49-75.
[69] AHRENS M;VABEN R;STOVER D .Stress distributions in plasma-sprayed thermal barrier coatings as a function of interface roughness and oxide scale thickness[J].Sur and Coat Technol,2002,161:26.
[70] T. Tomimatsu;S. Zhu;Y. Kagawa .Effect of thermal exposure on stress distribution in TGO layer of EB-PVD TBC[J].Acta materialia,2003(8):2397-2405.
[71] HOLLATZ M;BOBETH M;POMPE W .Local analysis of the stress development in alumina scales on NiAl and FeCrAl[J].Mat Science Forum,1997,251/252/253/254:373.
[72] Sridharan S.;Xie LD.;Jordan EH.;Gell M. .Stress variation with thermal cycling in the thermally grown oxide of an EB-PVD thermal barrier coating[J].Surface & Coatings Technology,2004(2/3):286-296.
[73] Tolpygo V.;Clarke DR. .Morphological evolution of thermal barrier coatings induced by cyclic oxidation[J].Surface & Coatings Technology,2003(0):81-86.
[74] TANIGUCHI S;ANDOH A .Improvement in the Oxidation Resistance of an Al deposited Fe-CrAl foil by preoxidation[J].Oxidation of Metals,2003,58:545.
[75] Xiaofang Bi;Huibin Xu;Sengkai Gong .Investigation of the failure mechanism of thermal barrier coatings prepared by electron beam physical vapor deposition[J].Surface & Coatings Technology,2000(1):122-127.
[76] A.M. KARLSSON;A. G. EVANS .A NUMERICAL MODEL FOR THE CYCLIC INSTABILITY OF THERMALLY GROWN OXIDES IN THERMAL BARRIER SYSTEMS[J].Acta materialia,2001(10):1793-1804.
[77] J.Cheng;E.H.Jordan .Thermal/residual stress in an electron beam physical vapor deposited thermal barrier coating system[J].Acta materialia,1998(16):5839-5850.
[78] D.S. Balint;J.W. Hutchinson .An analytical model of rumpling in thermal barrier coatings[J].Journal of the Mechanics and Physics of Solids,2005(4):949-973.
[79] X.C. Zhang;B.S. Xu;H.D. Wang;Y.X. Wu .An analytical model for predicting thermal residual stresses in multilayer coating systems[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,2005(1/2):274-282.
[80] BUSSO E P;LIN J;SAKURAI S et al.A mechanistic study of oxidation-induced degradation in a plasma-sprayed thermal barrier coating system-part Ⅰ:model formulation[J].Acta Materialia,2001,49:1515-1528.
[81] E. P. BUSSO;J. LIN;S. SAKURAI .A MECHANISTIC STUDY OF OXIDATION-INDUCED DEGRADATION IN A PLASMA-SPRAYED THERMAL BARRIER COATING SYSTEM[J].Acta materialia,2001(9):1529-1536.
[82] T. Xu;M. Y. He;A. G. Evans .A numerical assessment of the durability of thermal barrier systems that fail by ratcheting of the thermally grown oxide[J].Acta materialia,2003(13):3807-3820.
[83] J. A. Nychka;T. Xu;D. R. Clarke .The stresses and distortions caused by formation of a thermally grown alumina: comparison between measurements and simulations[J].Acta materialia,2004(9):2561-2568.
[84] M.Y. He;J.W. Hutchinson;A.G. Evans .Large deformation simulations of cyclic displacement instabilities in thermal barrier systems[J].Acta materialia,2002(5):1063-1073.
[85] A.M. Karlsson;T. Xu;A.G. Evans .The effect of the thermal barrier coating on the displacement instability in thermal barrier Systems[J].Acta materialia,2002(5):1211-1218.
[86] CHEN X;HUTCHINSON J W;HE M Y et al.On the propagation and coalescence of delamination cracks in compressed coatings:with application to thermal barrier systems[J].Acta Materialia,2003,51:2017.
[87] He MY.;Hutchinson JW.;Evans AG. .Simulation of stresses and delamination in a plasma-sprayed thermal barrier system upon thermal cycling[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):172-178.
[88] Esteban P. Busso;Zhen Q. Qian .A mechanistic study of microcracking in transversely isotropic ceramic-metal systems[J].Acta materialia,2006(2):325-338.
[89] Busso EP;Wright L;Evans HE;McCartney LN;Saunders SRJ;Osgerby S;Nunn J .A physics-based life prediction methodology for thermal barrier coating systems[J].Acta materialia,2007(5):1491-1503.
[90] MOES N;DOLVOW J;BELYTSCHKO T .A finite element method for crack growth without remeshing[J].International Journal for Numerical Methods in Engineering,1999,46:131-150.
[91] Christophe Daux;Nicolas Moes;John Dolbow;Natarajan Sukumar;Ted Belytschko .Arbitrary branched and intersecting cracks with the extended finite element method[J].International Journal for Numerical Methods in Engineering,2000(12):1741-1760.
[92] DUGDALE D S .Yielding of steel sheets containing slits[J].Journal of the Mechanics and Physics of Solids,1960,8:100-108.
[93] BARRENBLATT G I .The mathematical theory of equilibrium cracks in brittle fracture[J].Advances in Applied Mechanics,1962,7:55-125.
[94] NEEDLEMAN A .A continuum model for void nucleation by inclusion debonding[J].Journal of Applied Mechanics,Transactions of the ASME,1987,54:525-531.
[95] XU X P;NEEDLEMAN A .Numerical simulations of fast crack growth in brittle solids[J].Journal of the Mechanics and Physics of Solids,1994,42:1397-1434.
[96] M. Elices;G.V. Guinea;J. Gomez .The cohesive zone model: advantages, limitations and challenges[J].Engineering Fracture Mechanics,2002(2):137-163.
[97] Chandra N.;Li H.;Shet C.;Ghonem H. .Some issues in the application of cohesive zone models for metal-ceramic interfaces[J].International Journal of Solids and Structures,2002(10):2827-2855.
[98] BIAAS M;MAJERUS P;HERZOG R et al.Numerical simulation of segmentation cracking in thermal barrier coatings by means of cohesive zone[J].Elements Materials Science and Engineering (A),2005,412:241-251.
[99] T.S. Hille;A.S.J. Suiker;S. Turteltaub .Microcrack nucleation in thermal barrier coating systems[J].Engineering Fracture Mechanics,2009(6):813-825.
[100] GHOSH S;MALLETT R L .Voronoi cell finite elements[J].Computers & Structures,1994,50(01):33-46.
[101] PIAN T H H .Derivation of element stiffness matrices by assumed stress distribution[J].AIAA Journal,1964,2(05):1333-1336.
[102] ZHANG J;KATSUBE N .Problems related to application of eigenstrains in a finite element analysis[J].International Journal for Numerical Methods in Engineering,1994,37(18):3185-3193.
[103] ZHANG J;KATSUBE N .A hybrid finite element method for heterogeneous materials with randomly dispersed rigid inclusions[J].International Journal for Numerical Methods in Engineering,1995,38(10):1635-1653.
[104] GHOSH S;MOORTHY S .Elastic-plastic analysis of arbitrary heterogeneous materials with the Voronoi cell finite element method[J].Computer Methods in Applied Mechanics and Engineering,1995,121(1/2/3/4):373-409.
[105] S. LI;S. GHOSH .Multiple cohesive crack growth in brittle materials by the extended Voronoi cell finite element model[J].International Journal of Fracture,2006(3/4):373-393.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%