欢迎登录材料期刊网

材料期刊网

高级检索

借助扫描电镜(SEM)对2B06铝合金薄板料疲劳断口进行分析,揭示疲劳裂纹萌生机理;借助金相显微镜测量2B06铝合金第二相尺寸,通过统计分析获得最佳分布形式及拟合的概率密度函数;建立基于裂纹萌生微观机理的疲劳寿命的可靠性评估方法,分别计算不同可靠度条件下(90%,95%,99%和99.9%)的理论计算寿命.对比分析理论计算和试验结果,对评估方法进行试验验证.结果表明,基于疲劳微观机制的可靠性评估方法较好地模拟疲劳寿命随机分散性,经验证是合理可行的.

参考文献

[1] 蔡彪,郑子樵,廖忠全,钟申,李世晨.航空铝合金耐疲劳损伤特征微结构研究现状[J].材料导报,2010(17):134-138.
[2] TAN X M;ZHANG D F.Research on initial discontinuity state of an advanced aluminum alloy rolling thin plate[A].Zhuhai,Guangdong,China,2009
[3] LIAO M;MERATI A.Statistical analysis of the initial discontinuity state (IDS) data of 2024-T3 aluminum alloy[A].,2003
[4] Ali Merati;Graeme Eastaugh .Determination of fatigue related discontinuity state of 7000 series of aerospace aluminum alloys[J].Engineering failure analysis,2007(4):673-685.
[5] LAZ P J;CRAIG B A;HILLBERRY B M .A probabilistic total fatigue life model incorporating material inhomogeneities,stress level and fracture mechanics[J].International Journal of Fatigue,2001,23:S119-S127.
[6] Joel Payne;Greg Welsh;Robert J. Christ, Jr.;Jerrell Nardiello;John M. Papazian .Observations of fatigue crack initiation in 7075-T651[J].International Journal of Fatigue,2010(2):247-255.
[7] You Lu;Michael Gharghouri;Farid Taheri;Haipeng Han .Numerical study of the casting features on the fracture and debonding of Mg_(17)Al_(12) in AM60B Mg alloy under high cycle fatigue condition[J].Materials & design,2009(6):1994-2005.
[8] D.G. HARLOW;M.Z. WANG;R.P. WEI .Statistical Analysis of Constituent Particles in 7075-T6 Aluminum Alloy[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,2006(11):3367-3373.
[9] Gerhart I. Schueller .Reliability - Statistical methods in fracture and fatigue[J].Engineering Fracture Mechanics,2007(18):2917-2918.
[10] Ali Merati .A study of nucleation and fatigue behavior of an aerospace aluminum alloy 2024-T3[J].International Journal of Fatigue,2005(1):33-44.
[11] Ali Merati;Graeme Eastaugh .Determination of fatigue related discontinuity state of 7000 series of aerospace aluminum alloys[J].Engineering failure analysis,2007(4):673-685.
[12] Min Liao .Probabilistic modeling of fatigue related microstructural parameters in aluminum alloys[J].Engineering Fracture Mechanics,2009(5):668-680.
[13] M. D. Cappelli;R. L. Carlson;G. A. Kardomateas .The transition between small and long fatigue crack behavior and its relation to microstructure[J].International Journal of Fatigue,2008(8):1473-1478.
[14] 丁传富,刘建中,吴学仁.TC4钛合金和7475铝合金的长裂纹和小裂纹扩展特性的研究[J].航空材料学报,2005(06):11-17.
[15] D. G. Harlow;J. Nardiello;J. Payne .The effect of constituent particles in aluminum alloys on fatigue damage evolution: Statistical observations[J].International Journal of Fatigue,2010(3):505-511.
[16] M. D. Cappelli;R. L. Carlson;G. A. Kardomateas .The transition between small and long fatigue crack behavior and its relation to microstructure[J].International Journal of Fatigue,2008(8):1473-1478.
[17] H. Weiland;J. Nardiello;S. Zaefferer .Microstructural aspects of crack nucleation during cyclic loading of AA7075-T651[J].Engineering Fracture Mechanics,2009(5):709-714.
[18] 谭晓明,陈跃良,金平.基于模糊可靠性的飞机结构腐蚀疲劳寿命评定[J].中国航空学报(英文版),2005(04):346-351.
[19] Xiaoming Tan;Yueliang Chen;Ping Jin .Prediction Approach for Corrosion Fatigue Life of Aircraft Structure Based on Probabilistic Fracture Mechanics[J].Key engineering materials,2006(2):943-946.
[20] JIN P;TAN X M;CHEN Y L.Reliability approach and experimental validation for fatigue life prediction of aircraft structure under corrosion environment[A].北京:科学出版社,2006:2402-2406.
[21] Pan Shi;Sankaran Mahadevan .Damage tolerance approach for probabilistic pitting corrosion fatigue life prediction[J].Engineering Fracture Mechanics,2001(13):1493-1507.
[22] D. G. Harlow;R. P. Wei .A probability model for the growth of corrosion pits in aluminum alloys induced by constituent particles[J].Engineering Fracture Mechanics,1998(3):305-325.
[23] DOLLEY E J;WEI R P.Importance of chemically shortcrack-growth on fatigue life[A].Williamsburg,VA,1998:679-687.
[24] HB/Z112-86.材料疲劳试验统计分析方法[S].
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%