欢迎登录材料期刊网

材料期刊网

高级检索

在模糊RBF神经网络的基础上,通过融合基于贴近度的改进FCM和Conditional FCM算法,建立了改进的模糊RBF网络模型;并结合某钢厂连铸现场采集的历史数据将该模型应用于连铸漏钢预报的过程中.结果表明,改进的网络模型能更准确地辨识连铸粘结漏钢过程中典型温度模式1和模式2,对二者的预报率分别达到94.9%和98.3%,报出率均达到100%,其预报性能更佳,能更有效地预报拉漏事故.

参考文献

[1] Emling W H;Dawso S.Mold Instrumentation for Breakout Detection and Control[A].Washington:A Publication of the Iron and Steel Society,1991:197.
[2] Itoyama S;Yamanaka H;Tanaka S.Prediction and Prevention System for Sticking Type Breakout in Continuous Casting[A].Toronoto:A Publication of the Iron and Steel Society,1988:97.
[3] Bellomo P;Palchetti M;Maria E S.Neural Networks Utilization for Breakout Monitoring[A].Nashville:A Publication of the Iron and Steel Society,1995:345.
[4] Hatanaka K;Tanaka T;Kominami H .Breakout Forecasting System Based on Multiple Neural Networks for Continuous Casting in Steel Production[J].Fujitsu Scientific and Technical Journal,1993,29(03):265.
[5] 王唯一,荣亦诚,龚幼民,孙卓,张明,耿海,傅正权.基于模糊聚类的结晶器漏钢动态波形识别及其仿真[J].系统仿真学报,2003(04):472-475.
[6] 郭戈,乔俊飞,王伟,柴天佑.基于模糊模式识别的漏钢预报[J].信息与控制,1998(04):310-315.
[7] 王洪涛,熊和金.基于灰关联聚类的连铸漏钢预报系统[J].中国水运(理论版),2007(01):142-143.
[8] 张智星;孙春在;[日]水谷英二.神经-模糊和软计算[M].西安:西安交通大学出版社,2000
[9] Witold Pedrycz .Conditional Fuzzy C-Means[J].Pattern Recognition Letters,1996,17(06):625.
[10] Pedrycz W. .Conditional fuzzy clustering in the design of radial basis function neural networks[J].IEEE Transactions on Neural Networks,1998(4):601-612.
[11] Chen S.;Cowan C.F.N. .Orthogonal least squares learning algorithm for radial basis function networks[J].IEEE Transactions on Neural Networks,1991(2):302-309.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%