欢迎登录材料期刊网

材料期刊网

高级检索

界面对叠层材料的性能起着十分重要的作用,全面确切地了解界面性能是控制和改善叠层材料的最重要基础之一.本文从界面强化硬化、界面增韧及失效和界面稳定性三个方面详细综述了叠层复合材料的界面力学行为及性能的研究现状,并对今后的界面性能研究方向作了展望.

参考文献

[1] 马培燕,傅正义.微叠层结构材料的研究现状[J].材料科学与工程,2002(04):589-593.
[2] Bunshan R F;Nimmagadda R;Doeer H J .Structure and property relationships in microlaminate Ni - Cu and Fe - Cu condensates[J].Thin Solid Films,1980,72(02):261-275.
[3] 陈燕俊,周世平,杨富陶,林德仲,孟亮.层叠复合材料加工技术新进展[J].材料科学与工程,2002(01):140-142,132.
[4] Yang S G;Nam S W .A new experimental technique to investigate the α2/γ interface of lamellar TiAl alloy three dimensionally[J].Intermetallics,2002,10(02):171-175.
[5] J.F. Caron;R.P. Carreira .Interface behaviour in laminates with simplified model[J].Composites science and technology,2003(5):633-640.
[6] Was G S;Foecke T .Deformation and fracture in microlaminates[J].Thin Solid Films,1996,286(1-2):1-31.
[7] K. Kendall .Processing and properties of interfaces in layered materials[J].Materials Science and Technology: MST: A publication of the Institute of Metals,1998(6):504-509.
[8] El-Sherik A M et al.Deviations from Hall-Petch behaviour in as-prepared nanocrystalline nickel[J].Scripta Metallurgica et Materialia,1992,27(08):1185-1188.
[9] Nieh T G;Wadsworth J .Hall-Petch relation in nanocrystalline solids[J].Scripta Metallurgica et Materialia,1991,25(04):955-958.
[10] NING WANG;ZHIRUI WANG;K. T. AUST;U. ERB .EFFECT OF GRAIN SIZE ON MECHANICAL PROPERTIES OF NANOCRYSTALLINE MATERIALS[J].Acta Metallurgica et Materialia,1995(2):519-528.
[11] Embury J D;Hirth J P .On dislocation storage and the mechanical response of fine scale microstructures[J].Acta Metallurgica Et Materialia,1994,42(06):2051-2056.
[12] Nix W D .Mechanical properties of thin films[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1989,20(09):2217-2245.
[13] Srolovitz D J;Yalisove S M;Bilello J C .Design of multiscalar metallic multiplayer composites for high strength,high toughness, and low CTE mismatch[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1995,26(07):1805-1813.
[14] Kuan T S;Murakmi M .Low temperature strain behavior of Pb thin films on a substrate[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1982,13:383-391.
[15] Koehler J S .Attempt to design a strong solid[J].Physical Review B,1970,2(02):547-551.
[16] Lehoczky S L .Strength enhancement in thin-layered Al - Cu laminates[J].Journal of Applied Physics,1978,49(11):5479-5485.
[17] Kumayasu Youshii et al.Tensile strength of Ni/Cu/(001)Ni triple layer films[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1984,15(01):1273-1280.
[18] Anderson P .Fracture in multilayers[J].Scripta Metallurgica et Materialia,1992,27(06):687-692.
[19] Chu Xi;Barnett S A .Model of superlattice yield stress and badness enhancements[J].Journal of Applied Physics,1995,77(09):4403-4411.
[20] Cammarata R C;Sehiesinger T E .Nanoindentation study of ther mechanical properties of copper-nickel multilayered thin films[J].Applied Physics Letters,1990,56(19):1862-1864.
[21] Q. L. Feng;F. Z. Cui;G. Pu;R. Z. Wang;H. D. Li .Crystal orientation, toughening mechanisms and a mimic of nacre[J].Materials science & engineering, C. Biomimetic and supramolecular systems,2000(1):19-25.
[22] He Mingyuan;Hutchinson .Kinking of a crack out of an interface[J].Journal of Applied Mechanics,Transactions ASME,1989,56(06):270-278.
[23] 郭香华,蔡乾煌,汪长安,黄勇.叠层结构陶瓷强韧化设计的力学分析[J].固体力学学报,2000(04):313-322.
[24] Yong-Hui Fu;Jian-Guo Cui;Jia-Wen He .Interface toughening of Al-Cu laminate composite[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2003(1/2):1-6.
[25] 彭超群,黄伯云,贺跃辉.TiAl基合金的工艺-显微组织-力学性能关系[J].中国有色金属学报,2001(04):527-540.
[26] Vill M;Adams D P;Yalisove S M .Mechanical properties of tough multi-scale microlaminates[J].Acta Metallurgica Et Materialia,1995,43(02):427-437.
[27] S.M.Pickard;H.Zhang;A.K.Ghosh .Interface shear properties and toughness of NiAl/Mo laminates[J].Acta materialia,1997(10):4333-4350.
[28] Wang W X et al.Improvement interlaminar fracture toughness of composite laminates by whisker reinforced interlamination[J].Composites Science and Technology,2002,62(05):767-774.
[29] Mammoli A A;Graham A L;Reimanis I E;Tullock D L .The effect of flaws on ther propagation of cracks at bi-materials inferfaces[J].Acta Metallurgica Et Materialia,1995,43(03):1149-1156.
[30] V.Q.Bui;E.Marechal;H.Nguyen-Dang .Imperfect Interlaminar Interfaces in Laminated Composites: Interlaminar Stresses and Strain-energy Release Rates[J].Composites science and technology,2000(1):131-143.
[31] Fox MR;Ghosh AK .Structure, strength and fracture resistance of interfaces in NiAl /Mo model laminates[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,1999(2):261-268.
[32] Jia-Wen He;Min Jia;Sun-Ping Wen .Cracking in the soft interface layer of an Al-alloy laminate[J].International Journal of Fatigue,2003(5):421-426.
[33] 曾庆敦,余利杰.层间混杂叠层复合材料的最终拉伸破坏(Ⅰ)应力集中分析[J].复合材料学报,1999(01):93-98.
[34] Josell D;Spaepen F .Determination of the interfacial tension by zero creep experiments on multilayers[J].ACTA METALLURGICA ET MATERIALIA,1993,41(10):3007-3027.
[35] Heerden V D et al.The stability of Nb/Nb5Si3 microlaminates at high temperature[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2001,32(09):2363-2371.
[36] Lewis A C;Josell D;Weihs T P .Stability in thin film multilayers and microlaminates: the role of free energy, structure, and orientation at interfaces and grain boundaries[J].Scripta Materialia,2003,48(09):1079-1085.
[37] Knoedler H L et al.Morphological stability of coppersilver multiplayer thin films at elevated temperatures[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2003,34(04):1043-1054.
[38] N.SRIDHAR;J.M.RICKMAN;D.J.SROLOVITZ .MICROSTRUCTURAL STABILITY OF STRESSED LAMELLAR AND FIBER COMPOSITES[J].Acta materialia,1997(7):2715-2733.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%