欢迎登录材料期刊网

材料期刊网

高级检索

采用有机前驱体制备纳米材料工艺,制备出不同Al掺杂浓度的6H-SiC纳米线(Al/6H-SiC).用HRTEM、EDX、XRD等对纳米线进行了表征,发现随着起始材料中异丙醇铝含量的增加,所制备的纳米线中的Al浓度也在增加,最高可达到1.25%, HRTEM显示晶格间距为0.26 nm和0.25 nm,对应为6H-SiC的(101)和(102)面间距,Si、C原子比为1∶1.拉曼光谱得到这种6H-SiC的声子能量为100 meV,由吸收光谱带边吸收外推计算得到Al/6H-SiC纳米线光学带隙,掺杂浓度越大,吸收边红移越大.

Al-doped 6H-SiC nanowires (Al/6H-SiC) were successfully fabricated via catalyst-assisted pyro-lysis of polymeric precursor. The samples were characterized by HRTEM,EDS and XRD. The results showed that the doped concentrations were adjusted from 0.5% up to 1.25% with the Al concentrations in the precursors. The HRTEM pattern illustrated that the lattice fringe spacings pattern demonstrated that Al-doping causes a decrease in the lattice parameters with Al concentration as compared with standard values. The optical properties of single-crystalline 6H-SiC nanowires with different Al doping levels were characterized by Raman and absorption spectra. The Raman spectra reveal that the phonon energy of the single-crystalline SiC nanowire is 100 meV. We estimated the optical absorption band-gap of nanowires from optical band-edge absorption. Al doping results in a red-shift on the optical absorption edge of SiC nanowire, thus it demonstrates a reduction of optical band gap.

参考文献

[1] Demir T,Renfro T E,Glosser R,et al.Optical characterization of n-and p-doped 4H-SiC by electroreflectance spectroscopy[J].Appl.Phys.Lett.,2004,84(18):3540-3542.
[2] Zhao Q Z,Ciobanu F,Malzer S,et al.Enhancement of optical absorption and photocurrent of 6H-SiC by laser surface nanostructuring[J].Appl.Phys.Lett.,2007,91(12):121107(1-3).
[3] Casady J B,Johnson R W.Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications:A review[J].Solid.State Electron.,1996,39(10):1409-1422.
[4] Neudeck P G.Progress in silicon-carbide semiconductor electronics technology[J].J.Electron.Mater.,1995,24(4):283-8.
[5] Morkoc H,Strite S,Gao G B,et al.Large-band-gap SiC,Ⅲ-Ⅴ nitride,and Ⅱ-Ⅵ ZnSe-based semiconductor device technologies[J].J.Appl.Phys.,1994,76(3):1363-1398
[6] 陈德媛,钱波,徐骏,等.非晶碳化硅材料与光学微腔的制备与发光[J].发光学报,2007,28(1):121-125.
[7] Chiu S C,Huang C W,Li Y Y.Synthesis of high-purity silicon carbide nanowires by a catalyst-free arc-discharge method[J].J.Phys.Chem.C,2007,111(28):10294-10297.
[8] Niu J J,Wang J N.A simple route to synthesize scales of aligned single-crystalline SiC nanowires arrays with very small diameter and optical properties[J].J.Phys.Chem.B,2007,111(17):4368-4373.
[9] Zhou W M,Liu X,Zhang Y F.Simple approach to beta-SiC nanowires:Synthesis,optical,and electrical properties[J].Appl.Phys.Lett.,2006,89(22):223124(1-3).
[10] Li Z J,Zhang J L,Meng A,et al.Large-area highly-oriented SiC nanowire arrays:Synthesis,raman,and photoluminescence properties[J].J.Phys.Chem.B,2006,110(45):22382-22386.
[11] Ye H H,Titchenal N,Gogotsi Y,et al.SiC nanowires synthesized from electrospun nanofiber templates[J].Adv.Mater.,2005,17(12):1531-1535.
[12] Wu R B,Pan Y,Yang G Y,et al.Twinned SiC zigzag nanoneedles[J].J.Phys.Chem.C,2007,111(17):6233-6237.
[13] Pol V G,Pol S V,Gedanken A,et al.Thermal decomposition of commercial silicone oil to produce high yield high surface area SiC nanorods[J].J.Phys.Chem.B,2006,110(23):11237-11240.
[14] Xi G C,Liu Y K,Liu X Y,et al.Mg-catalyzed autoclave synthesis of aligned silicon carbide nanostructures[J].J.Phys.Chem.B,2006,110(29):14172-14178.
[15] Yang W Y,Miao H Z,Xie Z P,et al.Synthesis of silicon carbide nanorods by catalyst-assisted pyrolysis of polymeric precursor[J].Chem.Phys.Lett.,2004,383(5-6):441-444.
[16] Lai H L,Wong N B,Zhou X T,et al.Straight beta-SiC nanorods synthesized by using C-Si-SiO_2[J].Appl.Phys.Lett.,2000,76(3):294-296.
[17] Xi G C,Peng Y Y,Wan S M,et al.Lithium-assisted synthesis and characterization of crystalline 3C-SiC nanobelts[J].J.Phys.Chem.B,2004,108(52):20102-20104.
[18] Zou G F,Dong C,Xiong K,et al.Low-temperature solvothermal route to 2H-SiC nanoflakes[J].Appl.Phys.Lett.,2006,88(7):071913(1-3).
[19] Pei L Z,Tang Y H,Zhao H Z,et al.Formation mechanism of silicon carbide nanotubes with special morphology[J].J.Appl.Phys.,2006,100(4):046105(1-3).
[20] Pei L Z,Tang Y H,Chen Y W,et al.Preparation of silicon carbide nanotubes by hydrothermal method[J].J.Appl.Phys.,2006,99(11):114306(1-3).
[21] Mpourmpakis G,Froudakis G E,Lithoxoos G P,et al.SiC nanotubes:A novel material for hydrogen storage[J].Nano Lett.,2006,6(8):1581-1583.
[22] Zhang D Q,Alkhateeb A,Han H M,et al.Norton,silicon carbide nanosprings[J].Nano Lett.,2003,3(7):983-987.
[23] Liu Z Y,Ci L J,Jin-Phillipp N Y,et al.Vapor-solid reaction for silicon carbide hollow spherical nanocrystals[J].J.Phys.Chem.C,2007,111(34):12517-12521.
[24] Gao F M,Yang W Y,Wang H T,et al.Controlled Al-doped single-crystalline 6H-SiC nanowires,crystal growth & design[J].2008,8(5):1461-1464.
[25] Spanier Jonathan E.Optical and electrochemical properties of nanoscale materials[D].Columbia,USA:Graduate School of Science and Arts,Columbia University,2001.
[26] Okumura H,Sakuma E,Lee J H,et al.Raman scattering of SiC:Application to the identification of heteroepitaxy of SiC polytypes[J].J.Appl.Phys.,1987,61(3):1134-1136.
[27] Zhao Q Z,Ciobanu F,Malzer S,et al.Enhancement of optical absorption and photocurrent of 6H-SiC by laser surface nanostructruing[J].Appl.Phys.Lett.,2007,91(12):121107(1-3).
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%