欢迎登录材料期刊网

材料期刊网

高级检索

采用低频倒置扭摆内耗仪对组分为Pb(Zr0.7Ti0.3)O3(PZT73)和Pb(Zr0.3Ti0.7)O3(PZT37)的两种陶瓷的内耗Q-1及振动频率的平方f2(正比于材料的剪切模量G)与温度的关系进行了测定。在纯三角相的PZT73陶瓷中发现两个内耗峰。高温内耗峰PM起源于材料的顺电-铁电相变,低温内耗峰P1本质上是一个宽化的Debye峰,可归因于氧空位作用下的畴壁振荡弛豫。对纯四方相的PZT37陶瓷,除了P1和PM峰外,在P1与PM峰之间另有内耗峰P2,这与900畴附近的氧空位团簇的弛豫有关,其特征可用描述强关联系统的关联态模型(Couplingmodel)描述。

The internal friction Q- 1 and the square of vibration frequency f 2(proportional to shear modulus G) were measured as a function of temperature on undoped Pb(Zr0.7Ti0.3)O3 (PZT73) and Pb(Zr0.3Ti0.7) O3 (PZT37) ceramics from 200C to 5000C. Experiments were performed on an inverted torsion pendulum at low frequencies (1~ 5Hz) .Two internal friction peaks were found in pure rhombohedral PZT73 ceramics. The high temperature peak PM, which appears at the Curie temperature, originates from the para- ferroelec-tric phase transition. The low temperature peak P1 is a broadened Debye peak in nature, and it is contri-buted to the oscillation damping of the domain walls locked by the oxygen vacancies. For the pure tetrago-nal PZT37 ceramics, another peak P2,which appears between P1 and PM,can be well described by the coup-ling model. It is thought to be related with the relaxation of oxygen vacancy clusters near the 900 domains.

参考文献

[1] Cheng B L;Gabbay M;Fantozzi G J .Anelastic relaxation associated with the motion of domain wallls in Barium Titanate Ceramics[J].Materials Science,1996,31:4141-4147.
[2] Y. N. Wang;Y. N. Huang;H. M. Shen;Z. F. Zhang .Mechanical and Dielectric Energy Loss Related to Viscous Motion and Freezing of Domain Walls[J].Journal de Physique.IV,1996(8):505-514.
[3] Jaffe B;Cook W R;Jaffe Jr.Piezoelectric Ceramics[M].London and New York:Academic Press,1971
[4] Xu Y H .Ferroelectric Material and Their Applications[D].University of California CA USA,1991.
[5] Robel U;Stormann L S;Arlt G .Dielectric and its temperature dependence in ferroelectric ceramics[J].Ferroelectrics,1995,168:301-311.
[6] Gridnev S A;Posnikov V S .Ultralow- frequency internal friction mechanisms in ferroelectrics[J].Ferroelectrics,1980,29:157-162.
[7] Nowick A S;Berry B S.Anelastic Relaxation in Crystalline Solids[M].New York:Academic Press,1972
[8] Wang Zhi-yong,Chen Ting-guo.Low-Frequency Internal Friction Study for SrBi2Ta2O9 Ferroelectric Ceramics[J].ACTA PHYSICA SINICA,1998(10):764-772.
[9] Bourim E M;Idrissi H;Cheng B L et al.Elastic modulous and mechanical loss associated with phase transitions and domain walls motion in PZT based ceramics[J].Journal de Physique,1996,6(C8):633-636.
[10] Carl K;Hrdtl K H .Electrical after- effects in Pb(Ti,Zr)O3 ceramics[J].Ferroelectrics,1978(17):473-486.
[11] Yu K N;Yeh N C;Park S I .Diffusion of oxygen in superconducting YBa2Cu3O7- x[J].Physical Review,1989,B39:304-314.
[12] Zhou C J;Xie X M;Chen T G .Oxygen in- diffusion in 2233 phase BPSCCO superconductor oxide[J].Physica C,1992,191:185-192.
[13] TAN Q;Xu Z;Li J et al.Role of defect distributions and mobility on ferroelectric phase transformation in lead zirconate titanate[J].Applied Physics Letters,1997,71(08):1062-1064.
[14] Halperin B I;Varma C M .Defects and the central peak near structure phase transitions[J].Physical Review,1976,B14:4030-4044.
[15] NGAI K L;White C T .Frequency dependence of dielectric loss in condensed matter[J].Physical Review,1979,B20:2475-2486.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%