采用一步法于室温下有选择性地将小管径的单壁碳纳米管(SWCNTs)分散于生物相容性的聚合物--壳聚糖的水溶液中,并将其滴涂于玻碳电极表面,制备出微过氧化物酶-11(MP-11)修饰电极.循环伏安结果表明SWCNq、促进了MP-11在电极表面的直接电子传递,在pH=7.2的磷酸缓冲溶液中,MP-11的式电位为-0.36 V(vs.SCE),MP-11在电极表面的直接电子转移表观速率常数和覆盖度分别为78 s-1和8.76×10-10mol·cm-2.进一步的研究结果显示,固定在SWCNT表面的MP-11能保持其对氧气和过氧化氢还原的生物电催化活性,适合用作生物燃料电池的阴极和过氧化氢传感器.氧气在该修饰电极上的还原经历一个四电子过程;该过氧化氢生物传感器对过氧化氢还原的检测具有响应灵敏度高(响应时间小于4 S),检测线性范围为2.5×10-6~7.0×10-3vM,检测限为0.8 μM,相应的米氏常数和检测灵敏度分别为1.0 mM and 22.4μA/mM.
One-step aqueous dispersion and diameter- selective separation of HiPco single -walled carbon nanotubes (SWCNTs) has been accomplished through noncovalent complexation of the nanotubes with a water -soluble, biocompatible polymer chitosan (CHI) at room temperature. "Smaller -diameter" SWCNTs are preferentially dispersed and wrapped by CHI in the aqueous supema "tant that results following noncentrifuged precipitation, while "larger- diameter" SWCNTs exist in the precipitate. Such CHI wrapped small -diameter individual SWCNTs have been used for the immobilization of mieroperoxidase - 11 ( MP - 11 ) for direct elec-trochemistry and electrocatalytic purposes. We found that SWCNTs facilitate the direct electron transfer be-tween MP - 11 and the electrode surface, with a formal potential of MP - 11 at about - 0.36 V (vs. SCE) in phosphate buffer solution (pH 7.2). The heterogenous electron transfer rate constant and surface coverage of MP-11 are estimated to be 78 s-1 and 8.76 x 10-10 mol/cm2, respectively, Further study demonstrates that the modified electrode retains its electrocatalytic activity toward the reduction of both 02 and H2O2. The im-mobilized MP- 11 can catalyze O2 through a four -electron process to water, which could be used as a cath-ode in a bio fuel cell. Such SWCNT based biosensor exhibits a rapid response time, of less than 4 s, and a good linear detection range, for H2O2 concentration, from 2.5 μM to 70 μM with a detection limit of 0.8 μM. The apparent Michaelis - Menten constant (Km ) and the maximum electrode sensitivity ( Imax/Km ) are evalua-ted to be 1.0 mM and 22.4 μA/mM, respectively.
参考文献
[1] | Iijima S;Ichihashi T .Single-shell carbon nanotubes of 1 nm diameter[J].Nature,1993,363:603-604. |
[2] | Bethune D S;Kiang C H;De Vries M S et al.Cobalt catalysed growth of carbon nanotubes with single-atomiclayer walls[J].Nature,1993,363:605-606. |
[3] | Ajayan P.M. .Nanotubes from Carbon[J].Chemical Reviews,1999(6):1787-1799. |
[4] | Rao CNR;Govindaraj A;Gundiah G;Vivekchand SRC .Nanotubes and nanowires[J].Chemical Engineering Science,2004(22/23):4665-4671. |
[5] | Paradise M;Goswami T .Carbon nanotubes-Production and industrial applications[J].Materials & Design,2007,28:1477-1489. |
[6] | Merkoci A;Pumera M;Llopis X;Perez B;del Valle M;Alegret S .New materials for electrochemical sensing VI: Carbon nanotubes[J].TrAC: Trends in Analytical Chemistry,2005(9):826-838. |
[7] | Wang J .Carbon-nanotube based electrochemical biosensors: A review[J].Electroanalysis,2005(1):7-14. |
[8] | Wildgoose G G;Banks C E;Leventis H C et al.Chemically modified carbon nanotubes for use in electroanalysis[J].Microchimica Acta,2005,152:187-214. |
[9] | J. Justin Gooding .Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing[J].Electrochimica Acta,2005(15):3049-3060. |
[10] | Martin Pumera;Arben Merkoci;Salvador Alegret .Carbon nanotube-epoxy composites for electrochemical sensing[J].Sensors and Actuators, B. Chemical,2006(2):617-622. |
[11] | Chen D;Wang G;Li J H .lnterfacial bioelectrochemistry:Fabrication,properties and applications of functional nanotructured biointerfaces[J].Journal of Physical Chemistry C,2007,111:2351-2367. |
[12] | Hirsch A;Vostrowsky O .Functionalization of carbon nanotubes[J].Topics in Current Chemistry,2005,245:193-237. |
[13] | Tasis D;Tagmatarchis N;Bianco A .Chemistry of carbon nanotubos[J].Chemical Reviews,2006,106:1105-1136. |
[14] | Zhao LY;Liu HY;Hu NF .Assembly of layer-by-layer films of heme proteins and single-walled carbon nanotubes: electrochemistry and electrocatalysis[J].Analytical and bioanalytical chemistry,2006(2):414-422. |
[15] | Cheng WX;Jin GY;Zhang YZ .Direct electron transfer of hemoglobin on PSS/SWNTs film modified Au electrode and its interaction with ribavirin[J].Sensors and Actuators, B. Chemical,2006(1):40-46. |
[16] | Zbang Y J;Li J;Shen Y F et al.Poly -L-lysine funetionalization of single-walled carbon nanotubes[J].Journal of Physical Chemistry B,2004,108:15343-15346. |
[17] | Xin Yu;Debjit Chattopadhyay;Izabela Galeska;Fotios Papadimitrakopoulos;James F. Rusling .Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes[J].Electrochemistry communications,2003(5):408-411. |
[18] | O'Connor M;Kim SN;Killard AJ;Forster RJ;Smyth MR;Papadimitrakopoulos F;Rusling JF .Mediated amperometric immunosensing using single walled carbon nanotube forests[J].The Analyst: The Analytical Journal of the Royal Society of Chemistry: A Monthly International Publication Dealing with All Branches of Analytical Chemistry,2004(12):1176-1180. |
[19] | Xin Yu;Sang Nyon Kim;Fotios Papadimitrakopoulos .Protein immunosensor using single-wall carbon nanotube forests with electrochemical detection of enzyme labels[J].Molecular bioSystems,2005(1):70-78. |
[20] | Wang JX.;Li MX.;Shi ZJ.;Li NQ.;Gu ZN. .Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes[J].Analytical chemistry,2002(9):1993-1997. |
[21] | Wang L;Wang JX;Zhou FM .Direct electrochemistry of catalase at a gold electrode modified with single-wall carbon nanotubes[J].Electroanalysis,2004(8):627-632. |
[22] | Song C;Pehrsson P E;Zhao W .Recoverable solution reaction of HiPco carbon nanotubes with hydrogen peroxide[J].Journal of Physical Chemistry B,2005,109:21634-21639. |
[23] | Liu JQ;Chou A;Rahmat W;Paddon-Row MN;Gooding JJ .Achieving direct electrical connection to glucose oxidase using aligned single walled carbon nanotube arrays[J].Electroanalysis,2005(1):38-46. |
[24] | Patolsky F;Weizmann Y;Willner I .Long-range electrical contacting of redox enzymes by single -wailed carbon nanotube (SWCNT) connectors[J].Angewandte Chemie International Edition,2004,43:2113-2117. |
[25] | Anthony Guiseppi-Elie;Chenghong Lei;Ray H Baughman .Direct electron transfer of glucose oxidase on carbon nanotubes[J].Nanotechnology,2002(5):559-564. |
[26] | Sabahudin Hrapovic;Yali Liu;Keith B. Male;John H. T. Luong .Electrochemical Biosensing Platforms Using Platinum Nanoparticles and Carbon Nanotubes[J].Analytical Chemistry,2004(4):1083-1088. |
[27] | Zhang J;Feng M;Tachikawa H .Layer-by-layer fabrication and direct electrochemistry of glucose oxidase on single wall carbon nanotubes[J].Biosensors & Bioelectronics: The International Journal for the Professional Involved with Research, Technology and Applications of Biosensers and Related Devices,2007(12):3036-3041. |
[28] | Kaodimalla V B;Tripathi V S;Ju H X .A conductive ormosil encapsulated with ferroeene conjugate and mulfiwall carbon nanotubes for biosensing application[J].Biomaterials,2006,27:1167-1174. |
[29] | Wang YD;Joshi PP;Hobbs KL;Johnson MB;Schmidtke DW .Nanostructured biosensors built by layer-by-layer electrostatic assembly of enzyme-coated single-walled carbon nanotubes and redox polymers[J].Langmuir: The ACS Journal of Surfaces and Colloids,2006(23):9776-9783. |
[30] | Gooding J J;Wibowo R;Liu J Q et al.Protein electrochemistry using aligned carbon nanotube arrays[J].Journal of the American Chemical Society,2003,125:9006-9007. |
[31] | Zhen-Hai Gan;Qiang Zhao;Zhen-Nan Gu;Qian-Kun Zhuang .Electrochemical studies of single-wall carbon nanotubes as nanometer-sized activators in enzyme-catalyzed reaction[J].Analytica chimica acta,2004(2):239-247. |
[32] | Zhang MG;Smith A;Gorski W .Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes[J].Analytical chemistry,2004(17):5045-5050. |
[33] | Yi H;Wu L Q;Bentley W E et al.Biofabrication with ehitosan[J].Biomacromolecules,2005,6:2881-2894. |
[34] | Sodier P;Denuziere A;Viton C et al.Relation between the degree of acetylation and the electrostatic properties of chitin and chitosan[J].Biomacromolecules,2001,2:765-772. |
[35] | Yuqing Miao;Swee Ngin Tan .Amperometric hydrogen peroxide biosensor based on immobilization of peroxidase in chitosan matrix crosslinked with glutaraldehyde[J].The Analyst: The Analytical Journal of the Royal Society of Chemistry: A Monthly International Publication Dealing with All Branches of Analytical Chemistry,2000(9):1591-1594. |
[36] | Xi-Liang Luo;Jing-Juan Xu;Jin-Li Wang;Hong-Yuan Chen .Electrochemically deposited nanocomposite of chitosan and carbon nanotubes for biosensor application[J].Chemical communications,2005(16):2169-2171. |
[37] | Gregory F. Payne;Srinivasa R. Raghavan .Chitosan: a soft interconnect for hierarchical assembly of nano-scalecomponents[J].Soft matter,2007(5):521-527. |
[38] | Harbury H A;Loach P A .Oxidation-linked proton functions in heine octa-and undeeapeptides from mammalian cytochrome c[J].Journal of Biological Chemistry,1960,235:3640-3645. |
[39] | Santucci R;Picciau A;Antonini G et al.A complex of microperoxidase with a synthetic peptide:structural and functional characterization[J].Biochimica et Biophysics Acts,1995,1250:183-188. |
[40] | Narvaez A.;Katakis I.;Katz E.;Ranjit KT.;Bendov I. Willner I.;Dominguez E. .MICROPEROXIDASE-11-MEDIATED REDUCTION OF HEMOPROTEINS - ELECTROCATALYZED REDUCTION OF CYTOCHROME C, MYOGLOBIN AND HEMOGLOBIN AND ELECTROCATALYTIC REDUCTION OF NITRATE IN THE PRESENCE OF CYTOCHROME-DEPENDENT NITRATE REDUCTASE[J].Journal of Electroanalytical Chemistry: An International Journal Devoted to All Aspects of Electrode Kinetics, Interfacial Structure, Properties of Electrolytes, Colloid and Biological Electrochemistry,1997(1/2):227-233. |
[41] | Ruzgas T;Gaigalas A;Gorton L .Diffusionless electron transfer of microperoxidase-11 on gold electrodes[J].Journal of Electroanalytical Chemistry,1999,469:123-131. |
[42] | Fernando Patolsky;Tobias Gabriel;Itamar Willner .Controlled electrocatalysis by microperoxidase-11 and Au-nanoparticle superstructures on conductive supports[J].Journal of Electroanalytical Chemistry: An International Journal Devoted to All Aspects of Electrode Kinetics, Interfacial Structure, Properties of Electrolytes, Colloid and Biological Electrochemistry,1999(1):69-73. |
[43] | Wang MK;Shen Y;Liu Y;Wang T;Zhao F;Liu BF;Dong SJ .Direct electrochemistry of microperoxidase 11 using carbon nanotube modified electrodes[J].Journal of Electroanalytical Chemistry: An International Journal Devoted to All Aspects of Electrode Kinetics, Interfacial Structure, Properties of Electrolytes, Colloid and Biological Electrochemistry,2005(1):121-127. |
[44] | Liu Y;Wang MK;Zhao F;Guo ZH;Chen HJ;Dong SJ .Direct electron transfer and electrocatalysis of microperoxidase immobilized on nanohybrid film[J].Journal of Electroanalytical Chemistry: An International Journal Devoted to All Aspects of Electrode Kinetics, Interfacial Structure, Properties of Electrolytes, Colloid and Biological Electrochemistry,2005(1):1-10. |
[45] | Wang MK;Zhao F;Liu Y;Dong SJ .Direct electrochemistry of microperoxidase at Pt microelectrodes modified with carbon nanotubes[J].Biosensors & Bioelectronics: The International Journal for the Professional Involved with Research, Technology and Applications of Biosensers and Related Devices,2005(1):159-166. |
[46] | Xu Z A;Gao N;Chen H J et al.Biopolymer and carbon nanotubes interface prepared by self-assembly for studying the electrochemistry of micorperoxidase-11[J].Langmuir,2005,21:10808-10813. |
[47] | Yang H;Wang SC;Mercier P;Akins DL .Diameter-selective dispersion of single-walled carbon nanotubes using a water-soluble, biocompatible polymer[J].Chemical communications,2006(13):1425-1427. |
[48] | M. F. Islam;E. Rojas;D. M. Bergey;A. T. Johnson;A. G. Yodh .High Weight Fraction Surfactant Solubilization of Single-Wall Carbon Nanotubes in Water[J].Nano letters,2003(2):269-273. |
[49] | Valerie C. Moore;Michael S. Strano;Erik H. Haroz;Robert H. Hauge;Richard E. Smalley;Judith Schmidt;Yeshayahu Talmon .Individually Suspended Single-Walled Carbon Nanotubes in Various Surfactants[J].Nano letters,2003(10):1379-1382. |
[50] | Gong K P;Yan Y M;Zhang M N et al.Novel electrochemical method for sensitive determination of homocysteine with carbon nanotube-based electrodes[J].Analytical Sciences,2005,21:1383-1393. |
[51] | Soshi Shiraishi;Hideyuki Kurihara;Keiji Okabe;Denisa Hulicova;Asao Oya .Electric double layer capacitance of highly pure single-walled carbon nanotubes (HiPco~(TM) Buckytubes~(TM)) in propylene carbonate electrolytes[J].Electrochemistry communications,2002(7):593-598. |
[52] | Kim H;Popov B N .Characterization of hydrous ruthenium oxide/carbon nanocomposite supereapacitors prepared by a colloidal method[J].Journal of Power Sources,2002,104:52-61. |
[53] | Laviron E.General expression of the linear potential sweep vohammogram in the case of diffusionless electrochemical systems[J].Journal of Electroanalytical Chemistry,1979 |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%