欢迎登录材料期刊网

材料期刊网

高级检索

通过修正的Mie理论分别对单金属Ag、单金属Cu和Cu核Ag壳纳米颗粒/玻璃复合材料的吸收光谱进行了理论计算.计算结果表明,对单金属Ag纳米颗粒/玻璃复合材料,Ag的吸收峰位于425nm左右,不随颗粒尺寸变化而发生偏移;对单金属Cu纳米颗粒/玻璃复合材料,Cu的吸收峰也不随尺寸变化发生偏移但强度较弱;对Cu核Ag壳纳米颗粒/玻璃复合材料,随着Ag壳厚度的增加,Ag的吸收峰有明显的红移现象,而Cu的吸收峰位不变.此外,采用离子交换法制备了双金属Ag-Cu纳米颗粒/玻璃复合材料,实验结果表明,在后续热处理条件相同的情况下,延长Ag离子交换时间,Ag纳米颗粒尺寸增大,吸收峰红移,与理论计算结果很好的吻合.

参考文献

[1] Masanori Abe;Takeshi Suwa .Surface plasma resonance and magneto-optical enhancement in composites containing multicore-shell structured nanoparticles[J].Physical review, B. Condensed matter and materials physics,2004(23):235103.1-235103.15.
[2] Klar T.;Grosse S.;von Plessen G.;Spirkl W.;Feldmann J.;Perner M. .Surface-plasmon resonances in single metallic nanoparticles[J].Physical review letters,1998(19):4249-4252.
[3] Polarization dependences of surface plasmon bands and surface-enhanced Raman bands of single Ag nanoparticles[J].Applied physics letters,2003(11):2274-2276.
[4] Haes AJ.;Van Duyne RP. .A nanoscale optical blosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles[J].Journal of the American Chemical Society,2002(35):10596-10604.
[5] G. Raschke;S. Kowarik;T. Franzl;C. Sonnichsen;T. A. Klar;J. Feldmann .Biomolecular Recognition Based on Single Gold Nanoparticle Light Scattering[J].Nano letters,2003(7):935-938.
[6] H. Ditlbacher;J. R. Krenn;G. Schider;A. Leitner;F. R. Aussenegg .Two-dimensional optics with surface plasmon polaritons[J].Applied physics letters,2002(10):1762-1764.
[7] Mie G .On optical characteristics of turbid media with special reference to colloid metallic solutions[J].Ann PhysNew York,1908,25(03):377-445.
[8] Johnson P B;Chrusty R W .Optical constants of the noble metals[J].Physical Review B,1972,6(12):4370-4379.
[9] A.PODLIPENSKY;A.ABDOLVAND;G.SEIFERT;H.GRAENER .Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles[J].Applied physics, A. Materials science & processing,2005(8):1647-1652.
[10] 杨修春,刘会欣,李玲玲,黄敏,赵建富.影响贵金属纳米颗粒表面等离子体共振因素评述[J].功能材料,2010(02):341-345,349.
[11] Gaudry M.;Cottancin E.;Pellarin M.;Lerme J.;Arnaud L.;Huntzinger JR. Vialle JL.;Broyer M.;Rousset JL.;Treilleux M.;Melinon P. .Size and composition dependence in the optical properties of mixed (transition metal/noble metal) embedded clusters - art. no. 155409[J].Physical review, B. Condensed matter and materials physics,2003(15):5409-0.
[12] 刘会欣;杨修春;李玲玲.银纳米颗粒/玻璃复合材料的表面等离子共振研究[J].硅酸盐学报
[13] Thomas S;Nair SK;Jamal EMA;Al-Harthi SH;Varma MR;Anantharaman MR .Size-dependent surface plasmon resonance in silver silica nanocomposites[J].Nanotechnology,2008(7):75710-1-75710-7-0.
[14] Petranovskii V.;Gurin V.;Bogdanchikova N.;Licea-Claverie A.;Sugi Y. Stoyanov E. .The effect of SiO2/Al2O3 molar ratio in mordenite upon the optical appearance of reduced copper[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2002(1/2):174-183.
[15] Cottancin E;Celep G;Lermé J et al.Optical properties of noble metal cluster as a function of the size:comparison between experiments and a semi-quantal theory[J].Theoretical Chemistry Accounts,2006,116(04):514-523.
[16] Anderson TS.;Wittig JE.;Kinser DL.;Zuhr RA.;Magruder RH. .Fabrication of Cu-coated Ag nanocrystals in silica by sequential ion implantation[J].Nuclear Instruments and Methods in Physics Research, Section B. Beam Interactions with Materials and Atoms,2000(3):401-405.
[17] S. Bruzzone;G. P. Arrighini;C. Guidotti .Theoretical study of the optical absorption behavior of Au/Ag core–shell nanoparticles[J].Materials science & engineering, C. Biomimetic and supramolecular systems,2003(6/8):965-970.
[18] Masaharu Tsuji;Sachie Hikino;Ryuichi Tanabe .Synthesis of Ag@Cu Core-Shell Nanoparticles in High Yield Using a Polyol Method[J].Chemistry Letters,2010(4):334-336.
[19] 杨修春,李志会,李伟捷,杜天伦,黄文旵.银纳米颗粒-玻璃复合材料的光学性能[J].功能材料与器件学报,2007(06):554-560.
[20] 许静仙,杨修春,刘会欣,刘艳,张文华,徐法强.Ag-Cu双金属纳米颗粒在硅酸盐玻璃中的形成过程[J].硅酸盐学报,2009(06):953-959.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%