欢迎登录材料期刊网

材料期刊网

高级检索

研究了二维无关联四次振子系统,有理环面上积分Hamiltonian运动方程给出了系统一系列周期轨道和经典物理量,使用半经典近似下的Berry-Tabor求迹公式,得到了半经典的态密度.应用Fourier变换分析了每条周期轨道对态密度的贡献,并与量子态密度的Fourier变换结果比较证实了半经典求迹公式的有效性.

Periodic orbits of two dimensional uncoupled quartic oscillator were calculated by integrating Hamiltonian equations of motion on reasonable tori, and several classical quantities were also computed. Inserting them into Berry-Tabor trace formula, a trace, i. e. , the semiclassical density of states of the corresponding quantum system, was obtained. Finally, Fourier transform was adopted to verify the contribution of each periodic orbit. Good agreement between the semiclassical action function and the quantum action function indicates the validity of Berry-Tabor trace formula.

参考文献

[1] Gutzwiller M C. Chaos in Classical and Quantum Mechanics [M]. Springer-Verlag, New York, 1990, 282-381.
[2] Gutzwiller M C. Phase-intergral Approximation in Momentum Space and the Bound States of an Atom[J]. J Math Phys,1967, 8: 1 979-2 000.
[3] Berry M V, Tabor M. Closed Orbits and the Regular Bound Spectrum[J]. Proc R Soc Lond A, 1976, 349: 101-123.
[4] Ullmo Denis, Grinberg Maurice, Tomsovic Steven. Near-inte grable Systems: Resonance and semiclassical trace formulas [J]. Phys RevE, 1996, 54: 136-152.
[5] Bohigas O, Tomsovic S, Ullmo M. Manifestations of Classical Phase Space Structures in Quantum Mechanics[J]. Phys Rep, 1993, 223-2: 43-133.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%