欢迎登录材料期刊网

材料期刊网

高级检索

在强子层次上,原子核或强子物质的基本组元是核子和介子. 弄清这些强子的结构,并由基本原理出发研究它们的性质,是当代核物理的重要课题. 在各种介子中,π介子是最轻且最重要的介子. 关于自由空间中π介子的结构与性质、核介质内π介子的性质、π-核子相互作用与π-核相互作用等问题,始终受到相当多的关注. π介子在核物理中的作用直接联系着手征对称性,汤川秀树关于π介子的最初概念已经大大发展了. 有清楚的实验证据表明,核内存在π介子的集体模式,这种集体模式与以前观测到的所有核集体运动模式截然不同. 拟对π-核物理的研究现状及值得进一步研究的主要问题予以简要评述.

参考文献

[1] Ericson T,Weise W. Pions and Nuclei [M]. Oxford: Clarendon Press,1988,3.
[2] Amendolia S R,Arik M,Badelek B,et al (NA7 Collaboration). A Measurement of the Space-like Pion Electromagnetic Form-factor [J]. Nucl Phys,1986,B277: 168.
[3] Maris P,Tandy P C. Quark-photon Vertex and the Pion Charge Radius [J]. Phys Rev,2000,C61: 045202.
[4] Bernard V,Kaiser N,Meibner Ulf-G. Pion Charge Radius from Charged Pion Electroproduction [J]. Phys Rev,2000,C62: 028201.
[5] Greiner W. Reinhardt. Quantum Electrodynamics [M]. Berlin: Springer-Verlag,1992,110.
[6] Maris P,Tandy P C. π,K+ and K0 Electromagnetic form Factors [J]. Phys Rev,2000,C62: 055204.
[7] Kubis B,Meibner Ulf-G. Virtual Photons in the Pion form Factors and the Energy-momentum Tensor [J]. Nucl Phys,2000,A671: 332.
[8] Badier J,Boucrot J,Bourotte J,et al (NA3 Collaboration). Experimental Determination of the Pion Meson Structure Functions by the Drell-Yan Mechanism [J]. Z Phys,1983,C18: 281.
[9] Hecht M B,Roberts C D,Schmidt S M. Valence-quark Distributions in the Pion [J]. Phys Rev,2001,C63: 025213.
[10] Kumano S. Flavor Asymmetry of Antiquark Distributions in the Nucleon [J]. Phys Rep,1998,303 (4): 183.
[11] Zong H S,Lü X F,Gu J Z,et al. Vacuum Condensates in the Global Colour Symmetry Model [J]. Phys Rev,1999,C60: 055208.
[12] Cohen T D,Furnstahl R J,Griegel D K. Quark and Gluon Condensates in Nuclear Matter [J]. Phys Rev,1992,C45: 1 881.
[13] Brodsky S J,Lepage G P. Exclusive Process and Hadron Dynamics at Short Distances [J]. Phys Scripta,1981,23: 945.
[14] Weise W. The Pion as a Composite Particle [J]. Contemporary Physics,1990,31: 261.
[15] Feldmann T. Quark Structure of Pseudoscalar Mesons [J]. Int J Mod Phys,2000,A15: 159.
[16] Bicudo P J A,Krein G,Ribeiro J E F T. Chiral Corrections to Baryon Properties with Composite Pions [J]. Phys Rev,2001,C64: 025202.
[17] Cloet I C,Leinweber D B,Thomas A W. Simple Quark Model with Chiral Phenomenology [J]. Phys Rev,2002,C65: 062201 (R).
[18] Ericson T E O,Loiseau B,Thomas A W. Precision Determination of the πN Scattering Lengths and the Charged πNN Coupling Constant [J]. Nucl Phys,2000,A663-664: 541c.
[19] Krehl O,Hanhart C,Krewald S,et al. What does "ρ Exchange" in πN Scattering Mean [J]. Phys Rev,1999,C60: 055206.
[20] Büttiker P,Meibner Ulf-G. Pion-nucleon Scattering Inside the Mandelstam Triangle [J]. Nucl Phys,2000,A668: 97.
[21] Meibner Ulf-G,Oller J A. Chiral Unitary Mason-baryon Dynamics in the Presence of Resonances: Elastic pion-nucleon scattering [J]. Nucl Phys,2000,A673: 311.
[22] Takamatsu K. π0-π0 Sacttering Amplitudes and Phase Shifts Obtained by the π- p Charge Exchange Process [J]. Nucl Phys,2000,A675: 312c.
[23] Dmitrasinovic V,Myhrer F. Pion-nucleon Scattering and the Nucleon Σ Term in an Extended Linear Σ Model [J]. Phys Rev,2000,C61: 025205.
[24] Pascalutsa V,Tjon J A. Pion-nucleon Interacion in a Covarian Hadron-exchange Model [J]. Phys Rev,2000,C61: 054003.
[25] Lee T-S H,Wiringa R B. Quantum Monte Carlo Calculation of Pion Scattering from Li [J]. Phys Rev,2001,C63: 014006.
[26] Arndt R A,Strakovsky I I,Workman R L,et al. Updated Analysis of πN Elastic Scattering Data to 2.1 GeV: The baryon spectrum [J]. Phys Rev,1995,C52: 2 120.
[27] Koch R,Pietarinen E. Low-energy πN Partial Wave Analysis [J]. Nucl Phys,1980,A336: 331.
[28] Jade L. Consistent Description of NN and πN Interactions Using the Solitary Boson Exchange Potential [J]. Phys Rev,1998,C58: 96.
[29] Pearce B C,Jennings B K. A Relativistic Meson Exchange Model of Pion-nucleon Scattering [J]. Nucl Phys,1991,A528: 655.
[30] Schütz C,Durso J W,Holinde K,et al. Role of Correlated Two-pion Exchangein πN Scattering [J]. Phys Rev,1994,C49: 2 671.
[31] Bartz D,Stancu F L. NN Interaction in a Goldstone Boson Exchange Model [J]. Phys Rev,1999,C60: 055207.
[32] Bockmann R,Hanhart C,Krehl O,et al. πNN Vertex Function in a Meson Theoretical Model [J]. Phys Rev,1999,C60: 055212.
[33] Kaiser N. Chiral 3π-exchange NN Potentials: Results for dominant next-to-leading-order contributions [J]. Phys Rev,2001,C63: 044010.
[34] Ernst D J. Mesonic Cloud Contribution to the Nucleon and Δ Masses [J]. Phys Rev,2001,C64: 035201.
[35] Rijken T A,Stoks V G J,Klomp R A M,et al. The Nijmegen NN Phase Shift Analyses [J]. Nucl Phys,1990,A508: 173c.
[36] Henley E M,Zhang Zong-ye. Quark Mass Difference Effects on Meson Nucleon Coupling Constants [J]. Nucl Phys,1987,A472: 759.
[37] Miller G A,Nefkens B M K,Slaus I. Charge Symmetry,Quarks and Mesons [J]. Phys Rep,1990,194: 1.
[38] Hoshizaki N,Tanaguchi K. Energy Dependence of the Pion Nucleon Coupling Constant [J]. Prog Theor Phys,1992,88: 449.
[39] Arndt R A,Strakovsky I I,Workman R L. Does the πNN Coupling "Constant" Vary with Energy? [J]. Phys Rev,1993,C48: 474.
[40] Brown G E,Buballa M,Li Zi Bang,et al. Where the Nuclear Pions Are [J]. Nucl Phys,1995,A593: 295.
[41] Gross F,Surya Y. Unitary,Relativistic Resonance Model for πN Scattering [J]. Phys Rev,1993,C47: 703.
[42] Pascalutsa V,Tjon J A. A Relativistic Dynamical Model for πN Scattering [J]. Nucl Phys,1998,A631: 534c.
[43] 张小兵,李磊,宁平治. 核物理中的手征微扰论[J]. 原子核物理评论,2002,19 (1): 24.
[44] Bernard V,Kaiser N,Meibner Ulf-G. Chiral Corrections to the s Wave Pion-nucleon Scattering Lengths [J]. Phys Lett,1993,B309: 421.
[45] Bernard V,Kaiser N,Meibner Ulf-G. Chiral Prediction for the πN s-wave Scattering Length a- to Order O(M 4π) [J]. Phys Rev,1995,C52: 2 185.
[46] Bernard V,Kaiser N,Meibner Ulf-G. Aspects of Chiral Pion-nucleon Physics [J]. Nucl Phys,1996,A615: 483.
[47] Mojzis M. Elastic πN Scattering to O(p 3) in Heavy Baryon Chiral Perturbation Theory [J]. Eur Phys J,1998,C2: 181.
[48] Sa Borges J. Unitarity Corrections to a Low-energy Pion-nucleon Scattering Amplitude [J]. Nucl Phys,2000,A662 (3,4): 362.
[49] Ericson T E O. Mesons in Nuclear Physics [J]. CERN-TH 6529,1992.
[50] Wu S S,Yao Y J. In: Proc of 2nd Intern Symp on Medium Energy Physics [C]. In: Chao Weiqin,Shen peng-nian ed. Singapore: World Scientific,1995,43.
[51] Friman B L,Pandharipande V R,Wiringa R B. Calculations of Pion Excess in Nuclei [J]. Phys Rev Lett,1983,51 (9): 763.
[52] Berger E L,Coester F,Wiringa R B. Pion Density in Nuclei and Deep-inelastic Lepton Scattering [J]. Phys Rev,1984,D29: 398.
[53] Berger E L,Coester F. Nuclear Effects in Deep-inelastic Lepton Scattering [J]. Phys Rev,1985,D32: 1 071.
[54] Ericson M,Rosa-Clot M. Compton Scattering and Pion Number in Nuclei [J]. Phys Lett,1987,B188: 11.
[55] Jung Hong,Miller G A. Pionic Contributions to Deep Inelastic Nuclear Structure Functions [J]. Phys Rev,1990,C41: 659.
[56] Nakano K,Wong S S M. Model Independent Constraints on the Nuclear Pion Distribution Function In the EMC Effect [J]. Phys Lett,1991,B257: 10.
[57] Akulinichev S V. Pion Contribution to K+-nucleus Scattering [J]. Phys Rev Lett,1992,68 (3): 290.
[58] Jiang M F,Koltun D S. Meson Exchange Current Contribution to K+-nucleus Scattering [J]. Phys Rev,1992,C46: 2 462.
[59] Chen X Y,Taddeucci T N,McClelland J B,et al. Polarization Transfer In Quasifree (p,n) Reactions at 495 MeV [J]. Phys Rev,1993,C47: 2 159.
[60] Miller G A. Revealing Nuclear Pions Using Ecletron Scattering [J]. Phys Rev,2001,C64: 022201 (R).
[61] Kester L J H M,Hesselinka W H A,Kalantar-Nayestanakia N,et al. Two-nucleon Knock-out Investigated with the Semi-exclusive 12C(e,e'p) Reaction [J]. Phys Lett,1995,B344: 79.
[62] Kester L J H M,Blok H P,Hesselink W H A,et al. Two Body Currents in the Reaction 12C(e,e'p)11B at High Missing Momenta [J]. Phys Lett,1996,B366: 44.
[63] Blomqvist K I,Boeglin W U,Bhm R,et al. High-momentum Components in the 1p Orbitals of 16O [J]. Phys Lett,1995,B344: 85.
[64] Bobeldijk I,Bouwhuis M,Ireland D G,et al. High-momentum Protons in 208Pb [J]. Phys Rev Lett,1994,73 (20): 2 684.
[65] Aouissat Z,Belkacem M. Symmetry Conserving Nonperturbative s-wave Renormalization of the Pion in a Hot and Baryon-dense Medium [J]. Phys Rev,1999,C60: 065211.
[66] Bonutti F,Camerini P,Fragiacomo E,et al. π-π Pairs in Nuclei and the σ Meson [J]. Phys Rev,1999,C60: 018201.
[67] Aouissat Z,Chanfray G,Schuck P,et al. Reduced σ-meson Mass and in-medium S-wave π-π Correlations [J]. Phys Rev,2000,C61: 012202 (R).
[68] Kirchbach M,Riska D O. The Effective Induced Pseudoscalar Coupling Constant [J]. Nucl Phys,1994,A578: 511.
[69] Kim Hungchong. In-medium Pion Weak Decay Constants [J]. Phys Rev,2002,C65: 055201.
[70] Bernard V,Kaiser N,Meibner Ulf-G. Chiral Dynamics in Nucleons and Nuclei [J]. Int J Mod Phys,1995,E4: 193.
[71] Wirzba A,Thorsson V. In-medium Effective Chiral Lagrangians and the Pion Mass in Nuclear Matter [J]. Hep-ph/9502314.
[72] Hirenzaki S,Hatsuda T,Kume K,et al. Physics of Mesic Atoms and Mesic Nuclei -- Structure and Formation [J]. Nucl Phys,2000,A663-664: 553c.
[73] Hirenzaki S,Toki H. Structure and Formation of Deeply Bound Pionic Atoms [J]. Nucl Phys,2000,A670: 194c.
[74] Hirenzaki S,Kaneyasu H,Kume K,et al. Residual Interaction Effects on Deeply Bound Pionic States [J]. Phys Rev,1999,C60: 058202.
[75] Yamazaki T,Hayano R S,Itahashi K,et al. Discovery of Deeply Bound Pi-states in the 208Pb(d,3He) Reaction [J]. Z Phys,1996,A355: 219.
[76] Gilg H,Gillitzer A,Knülle M,et al. Deeply Bound π- States in 207Pb Formed in the 208Pb(d,3He) Reaction: Ⅰ. Experimental Method and Results [J]. Phys Rev,2000,C62: 025201.
[77] Itahashi K,Oyama K,Hayano R S,et al. Deeply Bound π- States in 207Pb Formed in the 208Pb(d,3He)Reaction: Ⅱ. Deduced Binding Energies and Widths and the Pion-nucleus Interaction [J]. Phys Rev,2000,C62: 025202.
[78] Toki H,Yamazaki T. Deeply Bound Pionic States of Heavy Nuclei [J]. Phys Lett,1988,B213: 129.
[79] Toki H,Hirenzaki S,Yamazaki T,et al. Structure and Formation of Deeply Bound Pionic Atoms [J]. Nucl Phys,1989,A501: 653.
[80] Fermi E,Yang C N. Are Mesons Elementary Particles ?[J]. Phys Rev,1949,76: 1 739.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%