欢迎登录材料期刊网

材料期刊网

高级检索

运用规范势分解理论研究了Dunne-Jackiw-Pi-Trugenberger模型中的自对偶方程,得到一个静态的自对偶Chern-Simons多涡旋解,每个涡旋由5个参数描述.发现了自对偶解与拓扑数之间的关系,而拓扑数由Brouwer度与Hopf指标确定.同时,也研究了该涡旋解的磁通量的拓扑量子化.

参考文献

[1] Nielsen H B,Olesen P.Nucl Plays,1973,B61:45.
[2] Jia Duojie,Duan Yishi,Li Xiguo.Phys Lett,2001,A289:245;Li Xiguo,Jia Duojie,Gao Yuan.High Energy Physics and Nuclear Physics,2003,27:12(in Chinese).(李希国,贾多杰,高远.高能物理与核物理,2003,27:12)
[3] Jia Duojie,Duan Yishi,Li Xiguo.Phys Lett,2001,A289:245;Li Xiguo,Jia Duojie,Gao Yuan.High Energy Physics and Nuclear Physics,2003,27:12(in Chinese).(李希国,贾多杰,高远.高能物理与核物理,2003,27:12)
[4] Chern S S.Simons Ann Math,1974,99:48.
[5] Schonfeld J.Nucl Plays,1981,B185:157.
[6] Dicer S,Jackiw R,Templeton S.Phys Rev Lett,1982,48:975.
[7] Forte S.Rev Mod Phys,1992,64:193.
[8] Nayak C,Wilczek F.Phys Rev Lett,1996,77:4 418.
[9] Witten E.Commun Math Phys,1989,12l:351.
[10] Nash C.Differential Topology and Quantun Field Theory.London:Academic Press,1992,223.
[11] Jackiw R,Weinberg E J.Phys Rev Lett,1990,64:2 234.
[12] Jackiw R,Lee K,Weinberg E J.Phys Rev,1990,D42:3 488.
[13] Jackiw R,Pi S Y.Phys Rev,1990,D42:3 500.
[14] Jackiw R,Pi S Y.Phys Rev Lett,1990,64:2 969.
[15] Dunne G V,Jackiw R,Pi S Y,et al.Phys Rev,1991,D43:1 332.
[16] Duan Yishi.1984,SLAC-PUB-3301.
[17] Li Xiguo.Nuclear Physics Review,2000,17(4):201(in Chinese).(李希国.原子核物理评论,2000,17(4):201.)
[18] Duan Yishi,Zhang Hong,Jia Guang.Pays Lett,1999,A253:57.
[19] Lee Xiguo,Liu Ziyu,Li Yongqing,et al.Common Theor Phys.2007,48:143.
[20] Lee Xiguo,Liu Ziyu,Li Yongqing,et al.arXiv:hep-th/0610142.
[21] Horvathy P A,Yera J C.Lett Math Phys,1998,46:111.
[22] Duan Yishi,Lee Xiguo.Helv Phys Acta,1995,68:513.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%