欢迎登录材料期刊网

材料期刊网

高级检索

利用共振光电离技术和飞行时间质谱技术,观察到了复合物p-C6H4F2…NH3(ND3)的共振双光子电离光谱。光谱分析表明,复合物分子间的伸缩振动频率为86.4~cm-1; 由复合物的光解离机理以及伸缩模的失谐参数与键能的关系,获得了复合物电子激发态S1和基态S0的键能信息。Ab initio 计算表明,p-C6H4F2…NH3(ND3) 复合物的几何结构是:NH3分子中的N原子位于垂直于p-C6H4F2分子环面的对称轴(Z轴)上,距环面的高度为0.352~nm; NH3的C3轴与p-C6H4F2的对称轴夹角是52.5°,且一个氢原子朝向环面;NH3可绕p-C6H4F2分子的Z轴近似的自由转动。键能计算值和预计存在的内转动与实验吻合。

We have studied the resonant two-photon ionizaition (R2PI) spectra of van der Waals complexes p-C6H4F2…NH3(ND3) through the S1←S0 transition with mass selectivity. Spectal analysis shows that the stretching frequencies of the complexes is about 86~cm-1. From the photodissociation energy, we estimated the bond energy of the complex p-C6H4F2…NH3 in the S1 and S0 states. Ab initio calculation for p-C6H4F2…NH3 gives the following geometry: the N atom of NH3 is located on the symmetry axis (Z-axis) and 0.353~nm above the benzene ring; the C3 axis of NH3 is at an angle of 52.5° with the Z-axis of p-C6H4F2 with one of the hydrogen atoms pointing towards the benzene ring; the rotation of NH3 around the Z-axis is nearly free. The calculataed bond dissociation energy and the prediction of internal rotation are consistent with our experimental results.

参考文献

[1] Kim Hye-Yong, Cole M W. Spectral and ionization energy shifts in van der Waals cluters. J. Chem. Phys., 1989, 90, 6055~6559
[2] Schauer M, Bernstein E R. Molecular jet study of the solvation of benzene by methane, ethane, and propane. J. Chem. Phys., 1989, 82, 726~735
[3] Michel Mons, Calve J L, Piuzzi F et al. Resonant two-photon ionization spectra of the external vibrational modes of the chlorobenzene-, phenol-, and toluene-rare gas(Ne, Ar, Kr, Xe). 1990, 92(4): 2155~2163
[4] Bieske E J, Rainbird M W, Atkinson I M et al.Stretch-bend coupling between van der Waalsmodes in the S1 state of substituted benzene-Ar1 complexes. J. Chem. Phys. 1989, 91(2): 752~761
[5] Su M C, Parmenter C S. A fluorescence characterization of the p-difluorobenzene-argon van der Waals complex, energy levels, geometries and dissociation energies.Chem. Phys., 1991, 156, 216~277
[6] The Raman and vibronic activity of intermolecular vibrations in aromatic-containing complexes and clusters.J. Chem. Phys., 1994, 101(10): 8390~8408
[7] Droz T, Leutwyler S. Spectroscopy and quantum dynamics of the 1,2-dimethylnaphalene-Ar van der Waals complex. J. Chem. Phys., 1995, 102(12): 4715~4725
[8] Hu Y H, Lu W Y, Yang S H. Intermolecular vibrations of the van der Waals complex p-C6H4FCH3…Ar.Chem. Phys., 1997, 218, 325~330
[9] Lu W Y, Hu Y H, Yang S H. Resonant two-photon ionization and fluorescene excitation studies of o, m-difluorobenzene…Ar. spectral shifts and intermolecular vibrations. J. Chem. Phys., 1998, 108(1): 12~19
[10] Sussmannn R, Neusser H J. The van der Waals rovibronic spectrum of p-difluorobenzene-Ar up to 125~cm-1 intermolecular energy: assignment and character of van der Waals modes. J. Chem. Phys., 1995,102(8): 3055~3063
[11] Coreno M, Piccirillo S, Guidoni A G et al. R2PI detection and specoscopy of van der Waals complexes of 4-fluorostynene with rare gas. Chem. Phys. Lett., 1995, 236(4): 580~586
[12] Douin S, Parneix P, Amar F G et al. Structure, dynamics, and spectroscopy of anline-(Argon)n cluster. 1. Experimental spectra and interpretation for n=1-6. J. Phys. Chem. A, 101: 122~138
[13] Disselkamp R, Bernstein E R. Solvation effects on reactive inter mediates: the nenzyl radocal and its clusters with Ar, N2, CH4, C2H6 and C3H8. J. Chem. Phys., 1993, 98(6): 4339~4354
[14] un S, Bernstein E R. Vibronic structure of the cyclopentadienyl radical and its nonrigid van der waals cluster with nitrogen. J. Chem. Phys., 1995, 103(11): 4447~4465
[15] Hu Y H, Lu W Y, Yang S H. Resonant two-photon ionization spectra of the van der Waals complexes: C6H5X…N2(X=F,Cl,Br). J. Chem. Phys., 1996, 105(13): 5305~5312
[16] Hu Y H, Lu W Y, Yang S H. Resonant two-photon ionization spectra of vander Waals complexes: o-, m-, and p-C6H4R2…N2(R=F,CH3). J. Photochemisty & Photobiol. A. Chemisty, 1997, 106: 91~99
[17] Menapace J A, Bernstein E. R. Hydrogen bonded and non-hydrogen bonded van der Waals Waals: comparison betwween clusters of pyrazine, pyrimidine, and benzene with various solvents. J. Chem. Phys., 1986, 85(4): 1795~1804
[18] Rodham D A, Suzuki S, Suenram R D et al.Hydrogen bonding in the benzene-ammonnia dimer. Nature, 1993, 362(22): 736~737
[19] Weyers K, Freudengerg Th. Energetics of benzene-ammonia dimers. Z. Physik. D, 1997, 39: 217~223
[20] Toshihiko Maeyama, Naohiko Mikami. Intracluster ion-molecule reactions within the photoinized van der Waals complexes C6H5F with NH3 and with H2O. J. Phys. Chem., 1991, 95: 7197~7204
[21] Brutschy B. Ion-molecule reactions within molecular clusters. Chem. Rev., 1992, 92: 1567~1587
[22] Brutschy B, Eggert J, Janes C et al. Nucleophillc substitution reactions in moclecular clusters following photoionnization. J. Phys. Chem., 1990, 94: 8624~8633
[23] Lu W Y, Hu Y H, Lin Z Y et al. Two-photon ionization studies of binary aromatic van der Waals cluters: benzene…chlorobenzene and (chlobenzene)2. J. Chem. Phys., 1996, 104(22): 8843~8851
[24] Gotch A J, ZwierT S. Multiphoton ionization studies of clusters immiscible liquids. 1. C6H6-(H2O)1,2. J. Chem. Phys., 1992, 96(5): 3388~3405
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%