欢迎登录材料期刊网

材料期刊网

高级检索

介绍了实现L-波段放大的三种光纤放大器:增益移位掺铒光纤放大器、掺铒碲化物光纤放大器和光纤拉曼放大器,就每一种光纤放大器的原理、结构、特点和发展现状进行了综述.

参考文献

[1] Flood Felton A. L-band Erbium-doped fiber amplifiers [C] //Proc. of OFC'2000, 2000, Paper WG1-2
[2] Massicott J, Arnitage J R, Wyatt R et al. High gain, broadband, 1.6 μm Er3+ doped silica fiber amplifier [J].Electron. Lett., 1990, 20 (26): 1645-1646
[3] Massicott J, Wyatt R, Ainslie B J. Low noise operation of Er3+ doped silica fiber amplifier around 1.6 μm [J].Electron. Lett., 1992, 28(20): 1924-1925
[4] Hansen K P, Nielsen M D. Bjarldev A. Design optimisation of erbium-doped fibres for use in L-band amplifie rs [J].Electron. Lett., 2000, 36(20): 1685-1686
[5] Shimojoh N, Naito T, Tanaka T et al. 640 Gbit/s (64×10 Gbit/s) WDM transmission over 10, 127 km using L-band EDFAs [J]. Electron. Lett., 2000, 36 (2): 155-156
[6] Flood F A, Wang C C. Impact of 980 nm pump detuning in L-band erbium-doped fiber amplifiers [C] //Proc. of OAA '99, 1999, Nara, Japan, 54, paper DW3-1
[7] Muro R Di, Kean P N, Wilson S J et al. Dependence of L-band amplifier efficiency on pump wavelength and amplifier design [C] //Proc. of OFC'2000, 2000, paper WG7
[8] Lee J, Ryu U, Park N. Improvement of 1.57~1.61 μm band amplification efficiency recycling wasted backward ASE through the unpumped EDF section [C] //Proc. of OFC'99, 1999, San Diego, CA, paper WA3, 7-10
[9] Buxens A, Poulsen H N, Clausen A T et al. Gain flattened L-band EDFA based on upgraded C-band EDFA using forward ASE pumping in an EDF section [J]. Electron. Lett., 2000, 36 (9): 821-823
[10] Yamada M, Ono H, Kanamori T et al. Broadband and gain-flattened amplifier composed of a 1.55 μm-band and a 1.58μm-band Er3+ doped fiber amplifier in a parallel configuration [J]. Electron. Lett., 1997, 33 (8): 710-711
[11] Yamada M, Ono H, Ohishi Y. Gain-flattened broadband Er3+-doped silica fiber amplifier with low noise charac-teristics [J]. Electron. Lett., 1998, 34 (18): 1747-1748
[12] Masuda H, Kawai S. Aida K. Wideband erbium-doped fibre amplifiers with three-stage amplification [J]. Electron.Lett., 1998, 34 (6): 567-568
[13] Mahdi M A, Asikan F R M, Poopalan P et al. Simultaneous bi-directional of C- and L-band Erbium doped fiber amplifier [C] //Proc. of OFC'2000, 2000, paper TuA3-1
[14] Aisawa S, Sakamoto T, Fukui M et al. Ultra-wideband long distance WDM demonstration of 1 Tbit/s (50×20 Gbit/s) 600 km transmission using 1550 and 1580 nm wavelength bands [J]. Electron. Lett., 1998, 34 (11): 1127-1129
[15] Nielsen T N et al. 3.28 Tbit/s (82×40 Gbit/s) transmission over 3×100 km nonzero-dispersion fiber using dual C and L-band hybrid Raman/Erbium doped in line amplifiers [C] //Proc. of OFC'2000, 2000, paper PD23
[16] Masuda H, Kawai S, Suzuki K I. Optical SNR enhanced amplification in long-distance recirculating-loop WDM transimission experiment using 1580 nm band hybrid amplifier [J]. Electron. Lett., 1999, 35 (5): 411-412
[17] Chung H S, Choi H B, Lee M S et al. Demonstration of 52 nm gain bandwidth over 2400 km (540 dB loss) with gain-equalized low-noise wide-band EDFA's [J]. IEEE Photon. Tech. Lett., 2000, 12 (3): 329-331
[18] Kani J, Hattori K, Jinno M et al. Trinal-wavelength-band WDM transmission over dispersion-shifted fibre [J].Electron. Lett., 1999, 35 (4): 321-322
[19] Flood F A.Gain saturation behavior in L-band EDFAs [J]. IEEE Photon. Tech. Lett., 2000, 12(9): 1156-1158
[20] Nakagawa J, Isshiki K, Shimizu K et al. 1580 nm band erbium-doped fiber amplifier employing novel temperature compensation technique [C] //Proc. of OFC'2000, 2000, paper WG3-2
[21] Wang J S, Vogel E M, Snitzer E. Tellurite glass: a new candidate for fiber devices [J]. Opt. Mat., 1994, 3:187-203
[22] Wang J S, Machewirth D P, Wu F et al. Neodymium-doped tellurite single-mode fiber laser [J]. Optics Lett., 1994,19(18): 1448-1449
[23] Mori A, Ohishi Y, Sudo S. Erbium-doped tellurite glass fiber laser and amplifier [J]. Electron. Lett., 1997, 33(10):863-864
[24] Ohishi Y, Mori A, Yamada M et al. Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5μm broadband amplification [J]. Optics Lett., 1998, 23 (4): 274-276
[25] Mori A, Sakamoto T, Kobayashi K et al. A 50 nm broadband tellurite-based EDFA with a 0.6 dB gain excursion and a 25.3 dB gain for 1.58μm-band WDM signals [C] //Proc. ECOC'99, 1999, 1:268-269
[26] Marhic M E, Morita I, Ho M C et al. Large cross-phase modulation and four waves mixing in tellurite EDFAs [J].Electron. Lett., 1999, 35 (23): 2045-2047
[27] Akasaka Y, Morita I, Ho M C et al. Characteristics of optical fibers for discrete Raman amplifiers [C] //Proc.ECOC'99, 1999, 1:8
[28] Masuda H, Kawai S, Aida K. Ultra-wideband hybrid amplifier comprising distributed Raman amplifier and erbium-doped fiber amplifier [J]. Electron. Lett., 1998, 34(13): 1342-1344
[29] Rottwitt K, Bromage J, Du M et al. Design of distributed Raman amplifiers [C] //Proc. ECOC'2000, 2000, paper 4.4.1
[30] Suzuki Hiro et al. 1-Tb/s (100×10Gb/s) super-dense WDM transmission with 25 GHz channel spacing in the zero-dispersion region employing distributed Raman amplification technology [J]. IEEE Photon. Tech. Lett., 2000,12(7): 903-905
[31] Emori Y, Tanaka K, Namiki S. 100 nm Bandwidth flat-gain Raman amplifiers pumped and gain-equalised by 12-wavelength-channel WDM laser diode unit [J]. Electron. Lett., 1999, 35 (16): 1355-1356
[32] Masuda H, Kawai S. Ultra wide-band Raman amplification with a total gain-bandwidth of 132 nm of two gain-bands around 1.5μm [C]//Proc. ECOC'99, 1999, paper WD3.2
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%