欢迎登录材料期刊网

材料期刊网

高级检索

量子信息学是物理学目前研究的热门领域.它主要包括量子通信和量子计算.文章简要介绍了量子通信和量子计算的理论框架,包括量子纠缠、量子不可克隆定理、量子密钥分配、量子隐形传态、量子并行计算、Shor以及Grover的量子算法,并介绍该领域的研究进展.

参考文献

[1] Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality be considered complete?[J]. Phys. Rev., 1935, 47: 777-780.
[2] Li Chuanfeng, Guo Guangcan. Progress in quantum information research [J]. Progress in Physics (物理学进展),2000, 20(4): 407-431(in Chinese).
[3] Clauser J F, et al. Proposed experiment to test local hidden-variable theories [J]. Phys. Rev. Lett., 1969, 23: 880.
[4] White A G, James D F V, Eberhard P H, et al. Nonmaximally entangled states: production, characterization,and utilization [J]. Phys. Rev. Lett., 1999, 83(16): 3103-3107.
[5] Sackett C A, Kielpinski D, King B E, et al. Experimental entanglement of four particles [J]. Nature, 2000,404(6775): 256-259.
[6] @@Eibl M,@@ Kiesel N,@@ Bourennane M,@@ et al.## Experimental realization of a three-qubit entangled W state [J].$$ Phys. Rev.Lett.,** 2004,)) 92(??7):&& 077901;
[7] Bourennane M, Eibl M, Kurtsiefer C, et al. Experimental detection of multipartite entanglement using witness operators [J]. Phys. Rev. Lett., 2004, 92(8): 087902.
[8] Wootters W K, Zurek W H. A single quantum cannot be cloned [J]. Nature, 1982, 299: 802-803.
[9] Barnum H, Caves C M, Fuchs C A, et al. Noncommuting mixed states cannot be broadcast [J]. Phys. Rev. Lett.,1996, 76(15): 2818-2821.
[10] Koashi M, Imoto N. No-cloning theorem of entangled states [J]. Phys. Rev. Lett., 1998, 81(19): 4264-4267.
[11] Mor T. No cloning of orthogonal states in composite systems [J]. Phys. Rev. Lett., 1998, 80(14): 3137-3140.
[12] Cochrane P T, Ralph T C, Dolinska A. Optimal cloning for finite distributions of coherent states[J]. Phys. Rev.A, 2004, 69(4): 042313.
[13] Buzek V, et al. Quantum copying: beyond the no-cloning theorem [J]. Phys. Rev. A, 1996, 54( 3 ): 1844-1852.
[14] Buzek V, Braunstein S L, et al. Quantum copying: a network [J]. Phys. Rev. A, 1997, 656(5): 3446-3452.
[15] Huang Y F, Li W L, Li C F, et al. Optical realization of universal quantum cloning [J]. Phys. Rev. A, 2001,64(1): 012315.
[16] Duan L M, Guo G C. Probabilistic cloning and identification of linearly independent quantum states [J]. Phys.Rev. Lett., 1998, 80(22): 4999-5002.
[17] Duan L M, Guo G C. A probabilistic cloning machine for replicating two non-orthogonal states [J]. Phys. Lett.A, 1998, 243(5-6): 261-264.
[18] Li Chengzu, Huang Mingqiu, Chen Pingxing, et al. Quantum Communication and Quantum Computation (量子通信与量子计算) [M]. Changsha: National University of Defense Technology Press, 2000. (in Chinese).
[19] Bennett C H, Brassard G. Proceedings of IEEE International Conference on Computers, Systems and Signal Processing [C]// Bangalore, New York: IEEE, 1984, 175.
[20] Bennett C H. Quantum cryptography using any 2 nonorthogonal states [J]. Phys. Rev. Lett., 1992, 68(21):3121-3124.
[21] Ekert A K. Quantum cryptography based on Bell theorem [J]. Phys. Rev. Lett., 1991, 67(6): 661-663.
[22] Goldenberg L, Vaidman L. Quantum cryptography based on orthogonal states [J]. Phys. Rev. Lett., 1995, 75(7):1239-1243.
[23] Koashi M, Imoto N. Quantum cryptography based on split transmission of one-bit information in two steps [J].Phys. Rev. Lett., 1997, 79(12): 2383-2386.
[24] Bruss D. Optimal eavesdropping in quantum cryptography with six states [J]. Phys. Rev. Lett., 1998, 81(14):3018-3021.
[25] Bechmann-Pasquinucci H, Peres A, Quantum cryptography with 3-state systems [J]. Phys. Rev. Lett., 2000,85(15): 3313-3316.
[26] Ralph T C. Continuous variable quantum cryptography [J]. Phys. Rev. A, 2000, 61(1): 010303.
[27] Zhang Y S, Li C F, Guo G C. Quantum key distribution via quantum encryption [J]. Phys. Rev. A, 2001, 64(2):024302.
[28] Gui Youzhen. Theoretical and Experimental Research on Long-Distance Optical Fiber Quantum Key Distribution System [D]. Doctor Dissertation of University of Science and Technology of China. 2004, 7-26 (in Chinese).
[29] Acin A, Gisin N, Scarani V. Coherent-pulse implementations of quantum cryptography protocols resistant to photon-number-splitting attacks [J]. Phys. Rev. A, 2004, 69(1): 012309.
[30] Scarani V, Acin A, Ribordy G, et al. Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations [J]. Phys. Rev. Lett., 2004, 92(5): 057901.
[31] Boileau J C, Gottesman D, Laflamme R, et al. Robust polarization-based quantum key distribution over a collective-noise channel [J]. Phys. Rev. Lett., 2004, 92(1): 017901.
[32] Bennett C H, Brassard G. SIGACT News, 1989, 20: 78.
[33] Kimura T, Nambu Y, Hatanaka T, et al. Single-photon interference over 150 km transmission using silica-based integrated-optic interferometers for quantum cryptography [OL]. e-print quant-ph / 0403104.
[34] Kurtsiefer C, Zarda P, et al. A step towards global key distribution [J]. Nature, 2002, 419(6906): 450-450.
[35] Braunstein S L, Kimble H J. Dense coding for continuous variables [J]. Phys. Rev. A, 2000, 61( 4 ): 042302.
[36] Zhang J, Peng K C, Quantum teleportation and dense coding by means of bright amplitude-squeezed light and direct measurement of a Bell state [J]. Phys. Rev. A, 2000, 62( 6 ): 064302.
[37] Gui Y Z, Han Z F, Mo X F, et al. Experimental quantum key distribution over 14.8 km in a special optical fibre [J]. Chinese Phys. Lett., 2003, 20(5): 608-610.
[38] Gui Y Z, Mo X F, Han Z F, et al. Experimental demonstration of the performance of quantum key distribution system at 1550 nm [J]. Submitted to International Journal of Quantum Information.
[39] Miao Erlong, Mo Xiaofan, Gui Youzhen, et al. Phase modulated free space quantum key distribution [J]. Acta Physica Sinica (物理学报), 2004, 53(7): 95-98 (in Chinese).
[40] Bennett C H, Brassard G, Crepeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels [J]. Phys. Rev. Lett., 1993, 70 (13): 1895-1899.
[41] Li W L, Li C F, Guo G C. Probabilistic teleportation and entanglement matching [J]. Phys. Rev. A, 2000, 61(3): 034301.
[42] Bouwmeester D, Pan J W, et al. Experimental quantum teleportation [J]. Nature, 1997, 390 (6660): 575-579.
[43] Boschi D, Branca S, De Martini F, et al. Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels [J]. Phys. Rev. Lett., 1998, 80(6): 1121-1125.
[44] Furusawa A, Sorensen J L, Braunstein S L, et al. Unconditional quantum teleportation [J]. Science , 1998,282(5389): 706-709.
[45] Nielsen M A, Knill E, Laflamme R. Complete quantum teleportation using nuclear magnetic resonance [J]. Nature,1998, 396(6706): 52-55.
[46] Kim Y H, Kulik S P, Shih Y H. Quantum teleportation of a polarization state with a complete Bell state measurement [J]. Phys. Rev. Lett., 2001, 86(7): 1370-1373.
[47] Lombardi E, Sciarrino F, Popescu S, et al. Teleportation of a vacuum-one-photon qubit [J]. Phys. Rev. Lett.,2002, 88 (7): 070402.
[48] Pan J W, Gasparoni S, Aspelmeyer M, et al. Experimental realization of freely propagating teleported qubits [J].Nature, 2003, 421(6924): 721-725.
[49] de Riedmatten H, Marcikic I, Tittel W, et al. Long distance quantum teleportation in a quantum relay configuration [J]. Phys. Rev. Lett., 2004, 92(4): 047904.
[50] Preskill J. Quantum Information and Quantum Computation [M]. California Institute of Technology, 1998.
[51] Shor P W. Algorithms for quantum computation discretelog and factoring [C]// Proc. of the 35th Annual Symposium on the Foundations of Computer Science, (IEEE Computer Society Press, Los Alamitos, CA) 1994, 124.
[52] Grover L K. Quantum mechanics algorithm for database search [C]//Proc. of the 28th, ACM Symposium on the Theory of Computation, ACM Press, New York: 1996, 212.
[53] Simon D. in Proceedings of the 35th Annual Symposium on the Foundations of Computer Science, (IEEE computer Society Press, Los Alamitos,CA) 1994, 116.
[54] Dai Kui, Song Hui, Liu Yun, et al. Introduction to Quantum Information(量子信息导论) [M]. Changsha: National University of Defense Technology Press, 2001, 71-107 (in Chinese).
[55] Vandersypen L M K, Steffen M, Breyta G, et al. Experimental realization of an order-finding algorithm with a NMR quantum computer [J]. Phys. Rev. Lett., 2000, 85(25): 5452-5455.
[56] Vandersypen L M K, Steffen M, Breyta G, et al. Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance [J]. Nature, 2001, 414 (6866): 883-887.
[57] Grover L K. Quantum machanics helps in searching for a needle in a haystack [J]. Phys. Rev. Lett., 1997, 79(2):325-328.
[58] Chuang I L, Gershenfeld N, Kubinec M. Experimental implementation of fast quantum searching [J]. Phys. Rev.Lett., 1998, 80(215): 3408-3411.
[59] Jones J A, Mosca M, Hansen R H. Implementation of quantum search algorithm on a quantum computer [J].Nature, 1998, 393 (6683): 344-346.
[60] Kwiat P G, Mitchell J R, Schwindt P D D, et al. Grover's search algorithm: an optical approach [J]. J. Mod.Optic., 2000, 47(2-3): 257-266.
[61] Bulger D, Baritompa W P, Wood G R. Implementing pure adaptive search with Grover's quantum algorithm [J].J. Optimiz. Theory. APP., 2003, 116(3): 517-529.
[62] Zhang Yong. Theoretical Research on Quantum-noise Control in Quantum Computer [D]. Doctor Dissertation of University of Science and Technology of China. 2004, 6-15 (in Chinese).
[63] Cirac J I, Zoller P. Quantum computations with cold trappedions [J]. Phys. Rev. Lett., 1995, 874( 20): 4091-4094.
[64] Steane A. The ion trap quantum information processor [J]. Appl. Phys. B-lasers., 1997, 64(6): 623-642.
[65] Deutsch I H, Brennen G K, Jessen P S. Quantum computing with neutral atoms in an optical lattice [J]. Fortschr Phys., 2000, 48(9-11): 925-943.
[66] Briegel H J, Calarco T, Jaksch D, et al. Quantum computing with neutral atoms [J]. J. Mod. Opt., 2000, 47(2-3):415-451.
[67] Takeuchi S. Experimental demonstrtion of a three-qubit quantum computation algorithm using a single photon and linear optics [J]. Phys. Rev. A, 2000, 612(3): 032301.
[68] Barenco A, Deutsch D, Ekert A. Conditional quantum dynamics and logic gates [J]. Phys. Rev. Lett., 1995,74(20): 4083-4086.
[69] Sleator T, Weinfurter H. Realizable universal quantum logic gates [J]. Phys. Rev. Lett., 1995, 74(20): 4087-4090.
[70] Loss D, Divincenzo D P. Quantum computation with quantum dots [J]. Phys. Rev. A, 1998, 57(1): 120-126.
[71] Kane B E. A silicon-based nuclear spin quantum computer [J]. Nature, 1998, 393 (6681): 133-137.
[72] Pazy E, Biolatti E, Calarco T, et al. Spin-based optical quantum computation via pauli blocking in semiconductor quantum dots [J]. Europhys. Lett., 2003, 62(2): 175-181.
[73] Makhlin Y, Schon G, Shnirman A. Quantum state engineering with Josephson-junction devices [J]. Rev. Mod.Phys., 2001, 73(2): 357-400.
[74] Schack R, Caves C M. Classical model for bulk-ensemble NMR quantum computation [J]. Phys. Rev. A, 1999,60(16): 4354-4362.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%