欢迎登录材料期刊网

材料期刊网

高级检索

从描述双折射光纤环形激光器动力学模型出发,模拟并分析了脉冲序列在非线性偏振旋转锁模光纤激光器环形腔内的演化过程,得出光纤快慢轴与起偏器之间的角度、以及双折射强度是影响锁模脉冲序列均匀性的重要因素,通过将普通单模光纤绕制成环产生应力双折射的方法进行了验证,并获得了中心波长1566.8 nm,脉宽为1.5 ps的稳定短脉冲序列.

参考文献

[1] Agrawal G P. trans. Jia Dongfang, et al. Translation, Nonlinear Fiber Optics, (非线性光纤光学原理及应用) [M].Publishing House of Electroniscs Industry (PHEI), 2002.
[2] Tamura K, Nelson L E, Hans H A, et al. Soliton versus nonsoliton operation of fiber ring lasers [J]. Appl. Phys.Lett., 1994, 64: 149.
[3] Tamura K, Nelson L E, et al. Pulse dynamics in stretched-pulse fiber laser [J]. Appl. Phys. Lett., 1995, 67: 158.
[4] Lefort L, et al. Practical low-noise stretched -pulse Yb3+-doped fiber laser [J]. Opt. Lett., 2002, 27: 291-293.
[5] Liu Dongfeng, Chen Guofu, Wang Xianhua. Experimental study on self-start passive mode-lock in Er3+ fiber ring laser [J]. Science in China (A), (中国科学 (A辑)), 1999, 29:656-661 (in Chinese).
[6] Menyuk C R. Pulse propagation in an elliptically birefringent Kerr media [J]. IEEE J. Quantum Electron., 1989,25: 2674-2682.
[7] Menyuk C R. Nonlinear pulse propagation in birefringent optical fibers [J]. IEEE J. Quantum Electron., 1987,23: 174-176.
[8] Muraki D J, Kath W L. Hamiltonian dynamics of solitons in optical fibers [J]. Physica D, 1991, 48: 53-64.
[9] Manakov S V. On the theory of two-dimensional stationary self-focusing of electro-magnetic waves [J] Sov. Phys.JETP, 1974, 38: 248.
[10] Whitham G B. Linear and Nonlinear Waves [M]. New York, NY: Wiley-Interscience, 1974.
[11] Kim A D. Pulse-train uniformity in optical fiber lasers passively mode-locked by nonlinear polariztion ratation [J]. IEEE J. Quantum. Electron., 2000, 36(4): 2000.
[12] Kutz J N, Hile C, Holmes P, et al. Hamiltonian dynamics of dispersion-managed breathers [J]. J. Opt. Soc. Am.B, 1998, 15: 87-96.
[13] Yao Y, Shi K, Ku W D, et al. In-line single mode fiber polarization controller [J]. Acta Optica Sinica (光学学报),1995, 636-640 (in Chinese)
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%