欢迎登录材料期刊网

材料期刊网

高级检索

可调谐二极管激光吸收光谱(TDLAS)技术是利用二极管激光器的波长调谐特性,获得被选定的待测气体特征吸收线的吸收光谱,从而对污染气体进行定性或者定量分析.在大气痕量气体和气体泄漏的监测中,为了提高探测的灵敏度,一般会根据具体情况对激光器采取不同的调制技术如波长调制、振幅调制、频率或者位相调制等,同时和长光程吸收池相结合使用,并辅之以各种噪声压缩技术.TDLAS不仅精度较高,选择性强而且响应速度快,已经广泛用于大气中多种痕量气体的检测以及地面的痕量气体和气体泄漏的检测.报道了最近研制的一套可调谐二极管激光吸收光谱检测大气中甲烷浓度的实验装置,这套装置具有灵敏度高、检测限低(ppb量级)、易于集成为便携式痕量气体检测仪等优点,若激光器的调谐波长范围能覆盖1.3~1.8 μm或者在光路中装配几台窄范围可调谐激光器实现波长扫描范围覆盖1.3~1.8μm,则可同时实现对大气中诸多重要痕量气体如CO2、CH4、CO、CH2O、H2S、NH3、HCI、C2H2等的同步监测.

参考文献

[1] Dickinson R E, Cicerone R J. Future global warming from atmosphric trace gases [J]. Nature, 1986, 319: 109-115.
[2] Santon A, Hovde C. Near-infrared diode lasers measure greenhouse gases [J]. Laser Focus World, 1992, 8: 117-120.
[3] Sachse G W, Browell E. Airborne lasers accurately measure greenhouse gases [J]. Laser Focus World, 1992, 4:73-74.
[4] Nadezhdinskii A, Berezin A, Chernin S, et al. High sensitivity methane analyzer based on tuned near infrared diode laser [J]. Spectrochimica Acta Part A, 1999, 55: 2083-2089.
[5] Amato F D, Mazzinghi P, Castagnoli F. Methane analyzer based on TDL's for measurements in the lower stratosphere: design and laboratory tests [J]. Appl. Phys. B, 2002, 75: 195-202.
[6] Fried A, Henry B, Wert B, et al. Laboratory, ground-based and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies [J]. Appl. Phys. B, 1998, 67: 317-330.
[7] Werle P, Mucke R, et al. Near-infrared trace-gas sensors based on room-temperature diode lasers [J]. Appl. Phys.B, 1998, 67: 307-315.
[8] Werle P. A review of recent advances in semiconductor laser based gas monitors [J]. Spectrohimica Acta Part A,1998, 54: 197-236.
[9] Feher M, Martin P A. Tunable diode laser monitoring of atmospheric trace gas constituents [J]. Spectrochimica.Acta Part A, 1995, 51: 1579-1599.
[10] Roths J, Zenker T, Parchatka U, et al. Four-laser airborne infrared spectrometer for atmospheric trace gas measurements [J]. Appl. Opt., 1996, 35: 7075-7084.
[11] Frish M B, White M A, Allen M G. Handheld laser-based sensor for remote detection of toxic and hazardous gases [J]. SPIE Paper, 2000, 4199-05.
[12] Cooper D E, Martinelli R U. Near-infrared diode lasers monitor molecular species [J]. Laser Focus World, 1992,11: 133-146.
[13] Weldon V, Phelan P, Hegarty J. Methane and Carbon Dioxide sensing using a DFB laser diode operating at1.64 μm [J]. Elec. Lett., 1993, 29: 560-561.
[14] Gulluk T, Wagner H E, et al. A high-frequency modulated tunable diode laser absorption spectrometer for measurements of CO2, CH4, N2O and CO in air samples of a few cma [J]. Rev. Sci. Instrum., 1997, 68: 230-239.
[15] Air Monitoring by Spectroscopic Techniques [M]. Edited by M. W. Sigrist, John Wiley & Sons, Inc. 1994.
[16] Kan Ruifeng, Dong Fengzhong, Zhang Yujun, et al. Influence of the laser intensity in second-harmonic detection with TDLAS-comparison of experiment and theory [J]. Accepted by Chinese Physics in 2005.
[17] Kan Ruifeng, Liu Wenqing, et al. Absorption measurements of ambient methane with tunable diode laser [J].Acta Physica Sinica (物理学报), 2005, 54(4): 447-450.
[18] Reid J, et al. Second-harmonic detection with tunable diode lasers comparison of experiment and theory [J].Appl. Phys. B, 1981, 26: 203-210.
[19] Cassidy D T, Reid J. Harmonic detection with tunable diode lasers-two-tone modulation [J]. Appl. Phys. B,1982, 29: 279-285.
[20] Hinkley E D, Ed., Laser Monitoring of the Atmosphere: Topics in Applied Physics [M]. New York: Springer-Verlag,1976. 14: 29-41; 237-295.
[21] Silver Joel A. Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods [J]. Appl. Opt., 1992, 31: 707-717.
[22] Cassidy D T, Reid J. Atmospheric pressure monitoring of trace gases using tunable diode lasers [J]. Appl. Opt.,1982, 21: 1185-1190.
[23] Riris H, Carlisle C B, Carr L W, et al. Design of an open path near infrared diode laser sensor: application to oxygen, water, and carbon dioxide vapor detection [J]. Appl. Opt., 1994, 33: 7059-7066.
[24] Riris H, Carlisle C H, Warren R E, et al. Signal to noise ratio enhancement in frequency- modulation spectrometers by digital signal processing [J]. Opt. Lett., 1994, 19: 144-146.
[25] Chen S, Palmer A W, Grattan K T V, et al. Digital signal processing techniques for electronically scanned optical fibre white light interferometry [J]. Appl. Opt., 1992, 31: 6003-6010.
[26] Qi Feng, Liu Wenqing, Zhou Bin, et al. Forecasting of the real-time data monitored by differential optical absorption spectroscopy method [J]. Acta Physica Sinica (物理学报), 2003, 52:2197 (in chinese).
[27] Wu Sh Q, Masusaki H, et al. Efficient reduction of fringe noise in trace gas detection with diode laser multi-pass absorption spectroscopy [J]. Jpn. J. Appl. Phys., 2000, 39: 4034-4040.
[28] White J U. Long optical paths of large aperture [J]. J. Opt. Soc. Am., 1942, 32: 285-288.
[29] White J U. Very long optical paths in air [J]. J. Opt. Soc. Am., 1986, 66: 411-416.
[30] Culshaw B, Stewart G, Dong F, et al. Fibre optic techniques for remote spectroscopic methane detection-from concepts to system realization [J]. Sensor & Actuators B, 1998, 51: 25-37.
[31] Hitran database.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%