欢迎登录材料期刊网

材料期刊网

高级检索

研究了Kerr介质中初始处于纠缠态的两二能级原子与相干光场相互作用体系的压缩特性.通过数值计算,讨论了原子偶极间相互作用耦合常数和Kerr介质与单模腔场相互作用的耦合强度对体系中的双原子偶极压缩和光场压缩的影响.结果发现在弱光场情况下,纠缠态原子偶极间相互作用和Kerr介质与光场作用越强,都使原子偶极振幅压缩现象从压缩状态退缩到无压缩状态;在强光场情况下,纠缠态原子偶极间相互作用越强,光场振幅压缩次数增多、振荡频率变慢;Kerr介质与光场作用越强,光场振幅压缩次数减少、振荡频率变快.

参考文献

[1] Stoler D. Equivalence classes of minimum-uncertainty packets [J]. Phys. Rev. D, 1970 , 12: 3217-3219.
[2] Walls D F, Zoller P. Reduced quantum fluctuations in resonance fluorescence [J]. Pyhs. Rev. Lett., 1981, 47(10):709-711.
[3] Walls D F. Squeezed states of light [J]. Nature, 1983, 306(11): 141-146.
[4] Yurke B. Use of cavities in squeezed-state generation [J]. Phys. Rev. A, 1984, 29(1): R408-410.
[5] Zhou P, Peng J S. Dipole squeezing in the two-photon Jaynes-Cummings model with superposition state preparation [J]. Phys. Rev. A, 1991, 44(5): 3331-3335.
[6] Xie R H. Relationship between field and atomic squeezing in the thermal Jaynes-Cummings model [J]. Phys. Rev.A, 1996, 53(4): 2897-2900.
[7] Milburn G J, Braunstein S L. Quantum teleportation with squeezed vacuum states [J]. Phys. Rev. A, 1999, 60(2):937-942.
[8] Zhang J, Peng K C. Quantum teleportation and dense coding by means of bright amplitude-squeezed light and direct measurement of a Bell state [J]. Phys. Rev. A, 2000, 62(6): 064302-064305.
[9] Wu Ying, Yang Xiaoxue. Algebraic method for solving a class of coupled-channel cavity QED models [J]. Phys.Rev. A, 2001, 63(3): 043816-043820.
[10] Li X S, Lin D L, Geroge T F. Squeezing of atomic variables in the one-photon and two-photon Jaynes-Cummings model [J]. Phys. Rev. A, 1989, 40(5): 2504-2507.
[11] Ashraf M M, Razmi M S K. Atomic-dipole squeezing and emission spectra of the nondegenerate two-photon Jaynes-Cummings model [J]. Phys. Rev. A, 1992, 45(11): 8121-8128.
[12] Ficek Z, Tanas R, Kielich S. Amplitude-squared squeezing in two-atom resonance fluorescence [J]. Opt. Commun.,1988, 69(1): 20-24.
[13] Xie R H. Efficient and lasting squeezed light due to constructivetwo-photon interference [J]. Phys. Rev. A, 2002,65(5): 055801(4).
[14] Hillery M. Squeezing of the square of the field amplitude in second harmonic generation [J]. Opt. Commun.,1987, 62(2): 135-138; Amplitude-squared squeezing of the electromagnetic field [J]. Phys. Rev. A, 1987, 36(8):3796-3802.
[15] Hillery M. Squeezing of the square of the field amplitude in second harmonic generation [J]. Opt. Commun.,1987, 62(2): 135-138; Amplitude-squared squeezing of the electromagnetic field [J]. Phys. Rev. A, 1987, 36(8):3796-3802.
[16] Hong C K, Mandel L. Generation of higher-order squeezing of quantum electromagnetic field [J]. Phys. Rev. A,1985, 32(2): 974-982.
[17] Zhang Z M, Xu L, Chai J L, et al. A new kind of higher-order squeezing of radiation field [J]. Phys. Lett. A,1990, 150(1): 27-30.
[18] Dong C H. Higher-order squeezing of atomic dipole [J]. Acta Physica Sinica (物理学报), 1996, 45(6): 946-951 (in Chinese).
[19] Bennett C H, Brassard G, Mermin N D. Quantum cryptography without Bell?s theorem [J]. Phys. Rev. Lett.,1992, 68(5): 557-559.
[20] Cirac J I, Zoller P. Quantum computations with cold trapped ions [J]. Phys. Rev. Lett., 1995, 74(20): 4091-4094.
[21] Peng J S, Li G X. Introduction of Modern Quantum Optics (近代量子光学导论) [M]. Beijing: Science Press, 1996.(in Chinese).
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%