欢迎登录材料期刊网

材料期刊网

高级检索

在大失谐条件下,使用时序算子T的二级微扰展开讨论了单模光学腔中放置不同原子时有效哈密顿量的形式;并进一步讨论了在真空光学腔场中,初态为直积态的两不同原子状态随时间的演化规律,研究的结果显示:(1)两不同原子具有|△1-△2|>>max(g1,g2)或△1+△2=0性质时,态在演化过程中保持仍为直积态的形式,不会出现纠缠态的情形,(2)两不同原子具有|△1-△2|<<max(g1,g2)性质时,态在演化过程中出现纠缠态的情形,在特定的时刻出现最大纠缠态.

参考文献

[1] Ekert A K. Quantum cryptography based on Bell's theorem [J]. Phys. Rev. Lett., 1991, 67: 661.
[2] Xue P, Li C F, Guo G C. Efficient quantum-key-distribution scheme with nonmaximally entangled states [J].Phys. Rev. A, 2001, 64: 032305.
[3] Bennett C H, Brassard G, Crepeau C, et al. Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels [J]. Phys. Rev. Lett., 1993, 70: 1895.
[4] Li W L, Li C F, Guo G C. Probabilistic teleportation and entanglement matching [J]. Phys. Rev. A, 62000, 1:034301.
[5] Bennett C H, et al. Communication via one- and two-particle operators on einstein-podolsky-rosen states [J].Phys. Rev. Lett., 1992, 69: 2881.
[6] Guo G P, Guo G C. Scheme for the preparation of multiparticle entanglement in cavity QED [J]. Phys. Rev. A,2002, 65: 042102.
[7] Zou Xubo, Pahlke K, Mathis W. Generation of an entangled state of two three-level atoms in cavity QED [J].Phys. Rev. A, 2003, 67: 044301.
[8] Scully M O, Zubairy M S. Quantum Optics [M]. Cambridge, England 1997, 197.
[9] Schleich W P. Quantum Optics in Phase Space [M]. Berlin: WILEY-VCH Verlag Berlin GmbH, 2001. 669.
[10] Zheng S B, Guo G C. Efficient scheme for two-atom entanglment and quantum information processing in cavity QED [J]. Phys. Rev. Lett., 2000, 85: 2392.
[11] Liu Tangkun, Wang Jisuo, Zhan Mingsheng. Fidelity of quantum state and the Cross-correlation function between atoms in the non-degenerate two photons Tavis-Cummings model [J]. Chinese Journal of Quantum Electronics(量子电子学报), 2001, 18(5): 438 (in Chinese).
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%