量子Fourier变换(QFT)是许多量子算法的关键子例行程序,核磁共振系统(NMR)是目前最有希望实现量子计算的物理系统之一.在介绍QFT,并对其进行进一步分析,得到了多量子位QFT的实现逻辑线路后,应用多量子算符代数理论,给出了基本量子逻辑门的核磁共振实现,分解了QFT各相应的逻辑操作,设计了相应的核磁共振脉冲序列.并通过量子计算仿真程序进行了实现多量子位QFT的实验验证,证明了所设计的NMR脉冲序列的合理性和实用性.
参考文献
[1] | Shor P.Polynomial-time algorithms for prime factorization and discrete logarithms on quantum computer[J].SIAM Journal of Computing,26(5):1484. |
[2] | Miao X.Universal construction of unitary transformation of quantum computation with one-and two-body interactions[OL].http://xxx.lanl.gov/abs/quant-ph/0003068. |
[3] | De Raedt H,Hams A,Michielsen K,et al.Quantum computer emulator[OL].http://rugth30.phys.rug.nl/compphys0/qce.htm. |
[4] | Pittenger A O.An Introduction to Quantum Computing Algorithms[M].Birkhauser,Boston,1999. |
[5] | Ekert A,Jozsa R.Quantum computation and Shor's factoring algorithm[J].Rev.Mod.Phys.,1966,68:733. |
[6] | Karafyllidis I G.Visualization of the quantum fourier transform using a quantum computer simulater[J].Quantum Information Processing,2003,2(4):271-288. |
[7] | Chuang I L,Gershenfeld N A,et al.Bulk quantum computation with nuclear magnetic resonance:theory and experiment[J].Proc.R.Soc.Load.A,1998,454:447-467. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%