欢迎登录材料期刊网

材料期刊网

高级检索

鉴于"方形"势阱描述量子阱中的空穴运动行为过于简单、理想,引入了反比相关的双曲余弦平方势,并在量子力学框架内,利用这个相互作用势把空穴的Schr(o)dinger方程化为了超几何方程,用系统参数和超几何函数严格地求解了空穴的本征值和本征函数,并以Ga1-xAlxAs-GaAs-Ga1-xAlxAs量子阱为例,计算了阱内的空穴跃迁.结果表明,空穴在量子阱中的能量是量子化的,而阱内的能级数目与系统参数有关.

参考文献

[1] Robin N,Heiland W,Jensen J,et al.Channeling effects observed in energy-loss spectra of Nitrogen ions scattered off a Pt(110) suface[J].Phys.Rev.A,2001,64:052901,1.
[2] Korol A,Solovyov A V,Greiner W.Coherent radiation of an ultrarelativistic charged particle channelled in a periodically bent crystal[J].J.Phys.G.,1998,24:L45-50.
[3] Korol A,Solovyov A V,Greiner W.Phaton emission by an ultrarelativistic particle channelling in a periodically bent crystal[J].Int.J.Mod.Phys.E.,1999,8:49-57.
[4] Luo S Y,Tan Y M,Shao M Z.Sine-squared potential and intrinsical width for channelling radiations[J].Chin.J.Luminescence (发光学报),2005,26(4):431-435 (in Chinese).
[5] Luo S Y,Shao M Z.Dislocation model for strained superlattice and dechannelling effects of a particles[J].Chin.J.of Semiconductors (半导体学报),2003,24(5):485-489 (in Chinese).
[6] Deng C L,Luo S Y,Shao M Z.Sine-squared potential and chaotic behaviour of strained superlattice[J].Chin.J.of Semiconductors (半导体学报),2005,26(2):294-298 (in Chinese).
[7] Haar D T.Problems in Quantum Mechanics[M].London:Infosearch Ltd.,1960.
[8] Wang Z X,et al.Introduction of special function (特殊函数导论)[M].Beijing:Beijing University Press,2000.235.
[9] Luo S Y,Tan Y M,Shao M Z,et al.The dislocation dynamics and the global bifurcation of system[J].Acta.Phys.Sin.(物理学报),2004,53(6):1219-1223 (in Chines).
[10] Luo S Y,Shao M Z.Dechannelling effects of strained superlattice and global bifurcation in system[J] Nucl.Phys.Rev.(原子和物理评论) 2003,1(20):55-59 (in Chinese).
[11] Luo S Y,et al.The tan2x potential and the eigenvalue and eigenfunction for planar channeling radiation[J].Acta.Phys.Sin.(物理学报),2005,54(9):4092-4096 (in Chines).
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%