研究了几何量子门抵抗控制外场随机涨落的能力.在用周期微扰近似代替随机涨落下的研究表明:无论是绝热的Berry几何相还是非绝热的Aharonov-Anandan(A-A)几何相,其抗涨落的能力都和其对应的动力学相位的抗涨落能力相当.而Berry相位(几何相位,动力学相位)的抗涨落能力要远强于A-A位相,可视为由绝热近似导致这种差别.此外验证了利用正交态方案构造的量子门具有很强的抗涨落能力.
参考文献
[1] | Vion D,Aassime A,Cottet A,et al.Manipulating the quantum state of an electrical circuit[J].Science,2002,296:886-889. |
[2] | Berry M V.Quantum phase factors accompanying adiabatic changes[J].Proc.R.Soc.London Ser.A,1984,392:45-57. |
[3] | Aharonov Y,Anandan J.Phase change during a cyclic quantum evolution[J].Phys.Rev.Lett.,1987,58:1593-1596. |
[4] | Wang X B,Kei J M.Non-adiabatic conditional geometric phase shift with NMR[J].Phys.Rev.Lett.,2001,87:097901-1-097901-4. |
[5] | Zanardi P,Rasetti M.Holonomic quantum computation[J].Phys.Rev.A,1999,264:94-99. |
[6] | Pachos J,Zanardi P,Rasetti M.Non-Abelian Berry connections for quantum computation[J].Phys.Rev.A,2002,61:010305-1-010305-4. |
[7] | Jones J A,Vedral V,Ekert A,et al.Geometric quantum computation using nuclear magenetic resonance[J].Nature,2000,403:869-871. |
[8] | Duan L M,Cirac J I,Zoller P.Geometric manipulation of trapped ions for quantum computation[J].Science,2001,292:1695-1697. |
[9] | Chiara G D,Palma G M.Berry phase for a spin 1/2 particle in a classical fluctuating field[J].Phys.Rev.Lett.,2003,91:090404-1-090404-4. |
[10] | Blais A,Tremblay A M S.Effect of noise on geometric logic gates for quantum computation[J].Phys.Rev.A,2003,67:012308-1-012308-6. |
[11] | Zhu S L,Wang Z D.Nonadiabatic noncyclic geometric phase and ensemble average spectrum of conductance in disordered mesoscopic rings with spin-orbit Coupling[J].Phys.Rev.Lett.,2000,85:1076-1079. |
[12] | Whitney R S,Makhlin Y,Shnirman A,et al.Geometric nature of the environment-induced berry phase and geometric dephasing[J].Phys.Rev.Lett.,2005,94:070407-1-070407-4. |
[13] | Gao Y M,Hu L.Non-adiabatic geometric quantum computation and topological quantum getes[J].Chinese Journal of Quantum Electronics (量子电子学报),2006,23:183-189 (in Chinese). |
[14] | Hasegawa Y,Loidl R,Badurek G,et al.Observation of off-diagonal geometric phase in polarized-neutroninterferometer experiment[J].Phys.Rev.A,2002,65:052111-1-052111-10. |
[15] | Chiao R Y,Wu Y S.Manifestation of Berry's topological phase for the photon[J].Phys.Rev.Lett.,1986,57:933-936. |
[16] | Shen J Q,Zhuang F.Geometric phases coiled fiber system Wang-Matsumoto Hamiltonian topological quantum computation[J].Acta.Phys.Sin.(物理学报),2005,54:1048-1051 (in Chinese). |
[17] | Du J F,et al.Implement of non-adiabatic geometric quantum computation using NMR[OL].arxiv:quant-ph 0207022. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%