欢迎登录材料期刊网

材料期刊网

高级检索

全同态带隙结构光子晶体光纤能够同时提供大模场面积和可控色散特性,为高功率下的非线性传输过程提供了一种新的介质,尤其在构成全光纤色散补偿和高功率孤子传输器件方面具有重要的应用价值.利用改进的广义非线性薛定谔方程数值模拟了全固态带隙结构光子晶体光纤中的非线性过程,分析了这种光纤中由于带隙特性和色散特性的共同作用,对飞秒激光非线性传输过程的影响,其中最明显的效应就是带隙特性对孤子自频移有很强的抑制作用.进一步详细讨论了入射脉冲峰值功率、带隙宽度以及带隙中心位置对非线性传输过程的影响.

参考文献

[1] Knight J C,Birks T A,Russell P,et al.All-silica single-mode optical fiber with photonic crystal cladding[J].Opt.Left.,1996,21(19):1547-1549.
[2] Hu M L,Wang Q Y,Li Y F,et al.Experimental analysis of the dependence factor during supercontinuum generation in photonic crystal fiber[J].Acta Phys.Sin.(物理学报),2004,53(12):4243-4247 (in Chinese).
[3] Wang J,Shi Y M.Study of chirps induced by the higher-order nonlinear effects in the photonic crystal fiber[J].Acta Phys.Sin.(物理学报),2006,55(6):2820-2824 (in Chinese).
[4] Li S G,Xing G L,Zhou G Y,et al.Adaptive split-step Fourier method for simulating ultrashort laser pulse propagation in photonic crystal fibres[J].Chin.Phys.,2006,15:437-443.
[5] Knight J C,Arriaga J,Birks T A,et al.Anomalous dispersion in photonic crystal fiber[J].IEEE Photon.Technol.Left.,2000,12(7):807-809.
[6] Dudley J M,Genty G,Coen S.Supercontinuum generation in photonic crystal fiber[J].Rev.Mod.Phys.,2006,78(4):1135-1185.
[7] Russell P.Photonic-crystal fibers[J].J.Lightwave Tech.,2006,24(12):4729-4749.
[8] Hu M L,Wang C Y,Chad L,et al.Frequency-tunable anti-Stokes line emission by eigenmodes of a birefringent microstructure fiber[J].Opt.Exp.,2004,12(9):1932-1937.
[9] Hu M L,Wang C Y,Song Y J,et al.Mode-selective mapping and control of vectorial nonlinear-optical processes in multimode photonic-crystal fibers[J].Opt.Ezp.,2006,14(3):1189-1198.
[10] Xiao L M,Jin W,Demokan M S.Fusion splicing small-core photonic crystal fibers and single-mode fibers by repeated arc discharges[J].Opt.Lett.,2007,32(2):315-117.
[11] Luan F,George A K,Hedley T D,et al.All-solid photonic bandgap fiber[J].Opt.Lett.,2004,29(20):2369-2371.
[12] Argyros A,Birks T A,Leon-Saval S G,et al.Photonic bandgap with an index step of one percent[J].Opt.Exp.,2005,13(1):309-314.
[13] Birks T A,Luan F,Pearee G J,et al.Bend loss in all-solid bandgap fibres[J].Opt.Exp.,2006,14(12):5688-5698.
[14] Isomaki A,Okhotnikov O G.All-fiber ytterbium soliton mode-locked laser with dispersion control by solid-corephotonic bandgap fiber[J].Opt.Exp.,2006,14(10):4368-4373.
[15] Nielsen C K,Jespersen K G,Keiding S R.A 158 fs 5.3 nJ fiber-laser system at 1 μm using photonic bandgapfibers for dispersion control and pulse compression[J].Opt.Exp.,2006,14(13):6063-6068.
[16] Isomaki A,Okhotnikov O G.Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgapfiber[J].Opt.Exp.,2006,14(20):9238-9243.
[17] Litchinitser N M,Zbeeluck A K,et al.Antiresonant reflecting photonic crystal optical waveguides[J].Opt.Lett.,2002,27(18):1592-1594.
[18] White T P,McPhedran R C,et al.Resonance and scattering in microstructured optical fibers[J].Opt.Lett.,2002,27(22):1977-1979.
[19] Bouwmans G,Luan F,et al.Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength[J].Opt.Exp.,2003,11(14):1613-1620.
[20] Li Y F,Wang CY,Birks T A,et al.Effective index method for all-solid photonic bandgap fibres[J].J.Opt.A,2007,9(10):858-861.
[21] Fuerbach A,Steinvurze P L,Bolger J A,et al.Nonlinear propagation effects in antiresonant high-index inclusion photonic crystal fibers[J].Opt.Left.,2005,30(8):830-832.
[22] Fuerbach A,Steinvurze P L,Bolger J A,et al.Nonlinear pulse propagation at zero dispersion wavelength in anti-resonant photonic crystal fibers[J].Opt.Exp.,2005,13(8):2977-2987.
[23] Konorov S O,Biryukov D A,Zheltikov A M,et al.Self-phase modulation of submicrojoule femtosecond pulses in a hollow-core photonic-crystal fiber[J].Appl.Phys.Left.,2004,85(17):3690-3692.
[24] Dinda P T,Nakkeeran K,Labruyère A.Suppression of soliton self-frequency shift by upshifted filtering[J].Opt.Left.,2002,27(6):382-384.
[25] Tian H,Li Z,Xu Z,et al.Stable soliton in the fiher-optic system with self-frequency shift[J].JOSA B,2003,20(1):59-64.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%