采用抛物线形限制势作为量子点对电子的有效束缚势,在密度泛函理论的基础上,使用五点差分法把二维方形量子点中电子的薛定谔方程离散化,然后用自洽迭代的方法求解二维方形量子点,得出绝对零度情况下二维方形量子点中处于基态电子的总能量,化学势和电子密度.并讨论了抛物线形限制势的强度对量子点中电子基态能量、化学协和电子密度的影响,得出了方形量子点多电子系统基态的一些性质.
参考文献
[1] | Cusack M A,Briddon P R,Jaros M.Electronic strticture,impurity binding energies,absorption spctra of InAs/GaAs quantum dots[J].Physica B,1998,253:10-27. |
[2] | Ashoori R C,Stormer H J,Weiner J S,et al.N-electron ground state energies of a quantum dot in magnetic field[J].Phys.Rev.Left.,1993,71:613-617. |
[3] | Inkson.Many Body Theory of Solids-an Introduction[M].New York:Plenum Press,1986.10-108. |
[4] | Indlekofer M K,et al.A model for many-body interaction effects in open quantum dot systems[J].Journal of Physics:Condensed Matter,2003,15:147-158. |
[5] | Bednarek S,Szafran B,Adamowski.Many-electron artificial atoms[J].Phys.Rev.B,1999,59(20):13036-13042. |
[6] | Szafran B,Adamowski J,Bednark S.Ground and excited states of few-electron systems in spherical quantum dots[J].Physica E,1999,4:1-10. |
[7] | Matsuse T,et al.Electronic structures in coupled two quantum dots by 3D-mesh hartree-fock-kohn-sham calculation[J].The European Physical Journal D,2001,16:391-394. |
[8] | Kumar A,Laux S E,Stern F.Electron states in a GaAs quantum dot in a magnetic field[J].Phys.Rev.,1990,B42:5166-5175. |
[9] | Tanatar B,Ceperley D M.Ground state of the two-dimension electron gas[J].Phys.Rev.,1989,B39:5005. |
[10] | Macucci M,Karl Hess,Iafrate G J.Electronic energy spectrum and the concept of capacitance in quantum[J].Phys.Rev.,1993,B48(23):17354-17363. |
[11] | Ma Wengan.Computational Physics (计算物理学)[M].Beijing:Science Press,2005.103-116 (in Chinese). |
[12] | Kohn W,Sham L J.Self-consistent equation includion exchange and correlation effects[J].Phys.Rev.,1965,140(14A):1133-1138. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%