欢迎登录材料期刊网

材料期刊网

高级检索

采用抛物线形限制势作为量子点对电子的有效束缚势,在密度泛函理论的基础上,使用五点差分法把二维方形量子点中电子的薛定谔方程离散化,然后用自洽迭代的方法求解二维方形量子点,得出绝对零度情况下二维方形量子点中处于基态电子的总能量,化学势和电子密度.并讨论了抛物线形限制势的强度对量子点中电子基态能量、化学协和电子密度的影响,得出了方形量子点多电子系统基态的一些性质.

参考文献

[1] Cusack M A,Briddon P R,Jaros M.Electronic strticture,impurity binding energies,absorption spctra of InAs/GaAs quantum dots[J].Physica B,1998,253:10-27.
[2] Ashoori R C,Stormer H J,Weiner J S,et al.N-electron ground state energies of a quantum dot in magnetic field[J].Phys.Rev.Left.,1993,71:613-617.
[3] Inkson.Many Body Theory of Solids-an Introduction[M].New York:Plenum Press,1986.10-108.
[4] Indlekofer M K,et al.A model for many-body interaction effects in open quantum dot systems[J].Journal of Physics:Condensed Matter,2003,15:147-158.
[5] Bednarek S,Szafran B,Adamowski.Many-electron artificial atoms[J].Phys.Rev.B,1999,59(20):13036-13042.
[6] Szafran B,Adamowski J,Bednark S.Ground and excited states of few-electron systems in spherical quantum dots[J].Physica E,1999,4:1-10.
[7] Matsuse T,et al.Electronic structures in coupled two quantum dots by 3D-mesh hartree-fock-kohn-sham calculation[J].The European Physical Journal D,2001,16:391-394.
[8] Kumar A,Laux S E,Stern F.Electron states in a GaAs quantum dot in a magnetic field[J].Phys.Rev.,1990,B42:5166-5175.
[9] Tanatar B,Ceperley D M.Ground state of the two-dimension electron gas[J].Phys.Rev.,1989,B39:5005.
[10] Macucci M,Karl Hess,Iafrate G J.Electronic energy spectrum and the concept of capacitance in quantum[J].Phys.Rev.,1993,B48(23):17354-17363.
[11] Ma Wengan.Computational Physics (计算物理学)[M].Beijing:Science Press,2005.103-116 (in Chinese).
[12] Kohn W,Sham L J.Self-consistent equation includion exchange and correlation effects[J].Phys.Rev.,1965,140(14A):1133-1138.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%