欢迎登录材料期刊网

材料期刊网

高级检索

提出了在量子点与腔相互作用系统中,利用双拉曼过程来实现非常规几何量子逻辑门方案.在本方案中,所有的演化本身与腔场态无关,因而对热场是不敏感的.在总位相中既包含有几何位相,又包含有动力学位相,但它的确仅依赖于量子态演化的整体几何特征.通过调节耦合常数和失谐量来选择所要的量子控制门,在实际的操作中不需要考虑消除动力学相位问题,因而易于操作.且避免因消除动力学相位引入的误差.

参考文献

[1] Loss D,DiVincenzo D P.Quantum computation with quantum dots[J].Phys.Rev.A,1998,57:120.
[2] Imamoglu A,Awschalom D D,Burkard G,et al.Quantum information processing using quantum dot spins and cavity QED[J].Phys.Rev.Lett,1999,83:4204.
[3] Leuenberger M N.Fault-tolerant quantum computing with coded spins using the conditional Faraday rotation in quantum dots[J].Phys.Rev.B,2006,73:075312.
[4] Zhao N,Zhong L,et al.Spin entanglement induced by spin-orbit interactions in coupled quantum dots[J].Phys.Rev.B,2006,74:075307.
[5] Emary C,Sham L J.Optically controlled logic gates for two spin qubits in vertically coupled quantum dots[J].Phys.Rev.B,2007,75:125317.
[6] Boyle S J,Ramsay A J,Bello F,et al.Two-qubit conditional quantum-logic operation in a single self-assembled quantum dot[J].Phys.Rev.B,2008,78:075301.
[7] Bertoni A,Bordone P,Brunetti R,et al.Quantum logic gates based on coherent electron transport in quantum wires[J].Phys.Rev.Lett.,1999,84:5912-5915.
[8] Zhu S L,Wang Z D.Unconventional geometric quantum computation[J].Phys.Rev.Lett.,2003,91:187902.
[9] Sorensen A S,Molmer K.Entangling atoms in bad cavities[J].Phys.Rev.A,2002,66:022314.
[10] Sorensen A S,Molmer K.Entanglement and quantum computation with ions in thermal motion[J].Phys.Rev.A,2000,62:022311.
[11] Feng X L,Wang Z,Wu C,et al.Scheme for unconventional geometric quantum computation in cavity QED[J].Phys.Rev.A,2007,75:052312.
[12] Clark S G,Parkins A S.Entanglement and entropy engineering of atomic two-qubit states[J].Phys.Rev.Lett.,2003,90:047905.
[13] Leibfried D,DeMarco B,Meyer V,et al.Experimental demonstration of a robust,high-fidelity geometric two ion-qubit phase gate[J].Nature,2003,422:412.
[14] Wang X,Zanardi P.Simulation of many-body interactions by conditional geometric phases[J].Phys.Rev.A,2002,65:032327.
[15] Zheng S B.Unconventional geometric quantum phase gates with a cavity QED system[J].Phys.Rev.A,2004,70:052320.
[16] Chen C Y,Feng M,et al.Strong-driving-assisted unconventional geometric logic gate in cavity QED[J].Phys.Rev.A,2006,73:032344.
[17] Chen C Y,Zhang X L,Deng Z J,et al.Influence from cavity decay on geometric quantum computation in the large-detuning cavity QED model[J].Phys.Rev.A,2006,74,032328.
[18] Lloyd S.Almost any quantum logic gate is universal[J].Phys.Rev.Lett.,1995,75:346.
[19] Kuratsuji H.Geometric canonical phase factors and path integrals[J].Phys.Rev.Lett.,1988,61:1687.
[20] Hillery M,Zubairy M S.Path-integral approach to problems in quantum optics[J].Phys.Rev.A,1982,26:451.
[21] Aharonov Y,Anandan J.Phase change during a cyclic quantum evolution[J].Phys.Rev.Lett.,1987,58:1593.
[22] Taylor J M,Lukin M D.Cavity quantum electrodynamics with semiconductor double-dot molecules on a chip[J].cond-mat/0605144.
[23] Majer J,Chow J M,Gambetta J M,et al.Coupling superconducting qubits via a cavity bus[J].Nature (London),2007,449:443.
[24] Childress L,Sorensen A S,Lukin M D.Mesoscopic cavity quantum electrodynamics with quantum dots[J].Phys.Rev.A,2004,69:042302.
[25] Brun T A,Wang H.Coupling nanocrystals to a high-Q silica microsphere:entanglement in quantum dots via photon exchange[J].Phys.Rev.A,2000,61:032307.
[26] Ryu H Y,Notomi M,Lee Y H.High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities[J].Appl.Phys.Lett.,2003,83:4294.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%