提出了在量子点与腔相互作用系统中,利用双拉曼过程来实现非常规几何量子逻辑门方案.在本方案中,所有的演化本身与腔场态无关,因而对热场是不敏感的.在总位相中既包含有几何位相,又包含有动力学位相,但它的确仅依赖于量子态演化的整体几何特征.通过调节耦合常数和失谐量来选择所要的量子控制门,在实际的操作中不需要考虑消除动力学相位问题,因而易于操作.且避免因消除动力学相位引入的误差.
参考文献
[1] | Loss D,DiVincenzo D P.Quantum computation with quantum dots[J].Phys.Rev.A,1998,57:120. |
[2] | Imamoglu A,Awschalom D D,Burkard G,et al.Quantum information processing using quantum dot spins and cavity QED[J].Phys.Rev.Lett,1999,83:4204. |
[3] | Leuenberger M N.Fault-tolerant quantum computing with coded spins using the conditional Faraday rotation in quantum dots[J].Phys.Rev.B,2006,73:075312. |
[4] | Zhao N,Zhong L,et al.Spin entanglement induced by spin-orbit interactions in coupled quantum dots[J].Phys.Rev.B,2006,74:075307. |
[5] | Emary C,Sham L J.Optically controlled logic gates for two spin qubits in vertically coupled quantum dots[J].Phys.Rev.B,2007,75:125317. |
[6] | Boyle S J,Ramsay A J,Bello F,et al.Two-qubit conditional quantum-logic operation in a single self-assembled quantum dot[J].Phys.Rev.B,2008,78:075301. |
[7] | Bertoni A,Bordone P,Brunetti R,et al.Quantum logic gates based on coherent electron transport in quantum wires[J].Phys.Rev.Lett.,1999,84:5912-5915. |
[8] | Zhu S L,Wang Z D.Unconventional geometric quantum computation[J].Phys.Rev.Lett.,2003,91:187902. |
[9] | Sorensen A S,Molmer K.Entangling atoms in bad cavities[J].Phys.Rev.A,2002,66:022314. |
[10] | Sorensen A S,Molmer K.Entanglement and quantum computation with ions in thermal motion[J].Phys.Rev.A,2000,62:022311. |
[11] | Feng X L,Wang Z,Wu C,et al.Scheme for unconventional geometric quantum computation in cavity QED[J].Phys.Rev.A,2007,75:052312. |
[12] | Clark S G,Parkins A S.Entanglement and entropy engineering of atomic two-qubit states[J].Phys.Rev.Lett.,2003,90:047905. |
[13] | Leibfried D,DeMarco B,Meyer V,et al.Experimental demonstration of a robust,high-fidelity geometric two ion-qubit phase gate[J].Nature,2003,422:412. |
[14] | Wang X,Zanardi P.Simulation of many-body interactions by conditional geometric phases[J].Phys.Rev.A,2002,65:032327. |
[15] | Zheng S B.Unconventional geometric quantum phase gates with a cavity QED system[J].Phys.Rev.A,2004,70:052320. |
[16] | Chen C Y,Feng M,et al.Strong-driving-assisted unconventional geometric logic gate in cavity QED[J].Phys.Rev.A,2006,73:032344. |
[17] | Chen C Y,Zhang X L,Deng Z J,et al.Influence from cavity decay on geometric quantum computation in the large-detuning cavity QED model[J].Phys.Rev.A,2006,74,032328. |
[18] | Lloyd S.Almost any quantum logic gate is universal[J].Phys.Rev.Lett.,1995,75:346. |
[19] | Kuratsuji H.Geometric canonical phase factors and path integrals[J].Phys.Rev.Lett.,1988,61:1687. |
[20] | Hillery M,Zubairy M S.Path-integral approach to problems in quantum optics[J].Phys.Rev.A,1982,26:451. |
[21] | Aharonov Y,Anandan J.Phase change during a cyclic quantum evolution[J].Phys.Rev.Lett.,1987,58:1593. |
[22] | Taylor J M,Lukin M D.Cavity quantum electrodynamics with semiconductor double-dot molecules on a chip[J].cond-mat/0605144. |
[23] | Majer J,Chow J M,Gambetta J M,et al.Coupling superconducting qubits via a cavity bus[J].Nature (London),2007,449:443. |
[24] | Childress L,Sorensen A S,Lukin M D.Mesoscopic cavity quantum electrodynamics with quantum dots[J].Phys.Rev.A,2004,69:042302. |
[25] | Brun T A,Wang H.Coupling nanocrystals to a high-Q silica microsphere:entanglement in quantum dots via photon exchange[J].Phys.Rev.A,2000,61:032307. |
[26] | Ryu H Y,Notomi M,Lee Y H.High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities[J].Appl.Phys.Lett.,2003,83:4294. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%