欢迎登录材料期刊网

材料期刊网

高级检索

采用溶剂蒸发对流自组装法将单分散二氧化硅(SiO2)微球组装形成三维有序胶体晶体模板.以锗烷(GeH4)为先驱体气,用等离子增强化学气相沉积法向胶体晶体的空隙中填充高折射率材料Ge.酸洗去除二氧化硅微球,得到Ge反蛋白石三维光子晶体.通过扫描电镜、X射线衍射仪和傅里叶变换显微红外光谱仪对锗反蛋白石的形貌、成分和光学性能进行了表征.结果表明: Ge在SiO2微球空隙内填充致密均匀,得到的锗为多晶态,锗反蛋白石为三维有序多孔结构.锗反蛋白石的测试光谱图有明显的光学反射峰,表现出光子带隙效应.测试的完全光子带隙位于中红外3.4μm处,测试的光学性能与理论计算基本吻合.

Monodisperse silica microspheres were assembled into a three-dimensional colloidal crystal template with long-range order by the solvent vaporization convection self-assembly method. Using GeH4 as the precursor gas, the plasma enhanced chemical vapor deposition method was then used to fill the voids of the silica colloidal crystal template with high refractive index germanium, then silica colloidal crystals template was removed by acid etching. Thus germanium inverse opal photonic crystal was obtained. The modality, components, structure and optic capability of the resulting samples were characterized by scanning electron microscope and X-ray diffraction and Fourier transform microscopic IR spectroscopy. The results show that germanium is homogeneously distributed inside the voids of the silica template. The crystalline state of germanium is polycrys-talline state. Germanium inverse opal exhibits a three-dimensional ordered porous structure. Thespectrum of the samples has optic reflective peaks and shows the photonic band gap effects. Thecomplete three-dimensional bandgap lies in mid-infrared (about 3.4 μm) and optical capability is inosculated with the calculation.

参考文献

[1] Yablonovitch E.Inhibited spontaneous emission in solid-state physics and electronics[J].Phys.Rev.Lett.,1987,58:2059-2062.
[2] John S.Strong localization of photons in certain disordered dielectric lattices[J].Phys.Rev.Lett.,1987,58:2486-2489.
[3] Xia Younan,Gates B,et al.Monodispersed colloidal spheres:old material with new applications[J].Adv.Mater.,2000,12(10):693-716.
[4] Busch K,John S.Photonic band gap formation in certain self-organizing systems[J].Phys.Rev.E,1998,58:3896-3908.
[5] Miguez H,Chomski E,Garcia-santamaria F,et al.Photonic bandgap engineering in germanium inverse opal by chemical vapor deposition[J].Adv.Mater.,2001,13:1634-1637.
[6] Garcia-Santamaria F,Ibisate M,Rodriguez I,et al.Photonic band engineering in opals by growth of Si/Ge multiplayer shells[J].Adv.Mater.,2003,15:788-792.
[7] Leung K M,Liu Y F.Photon band structures:the plane wave method[J].Phys.Rev.B,1990,41:10188-10190.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%