欢迎登录材料期刊网

材料期刊网

高级检索

给出了第一种椭圆方程的一些新解和解的非线性叠加公式,然后与一种函数变换相结合,借助符号计算系统Mathematica,构造了变系数(3+1)维Zakharov-Kuznetsov方程的类Jacobi椭圆函数精确解以及无穷多个类孤子解和三角函数解.

Some new solutions of the first kind of elliptic equation and formula of nonlinear superposition of the solutions are given. Combing the solutions with fimction transformation to construct Jacobi-like elliptic function exact solutions, a number of soliton-like solutions and triangular solutions of (3+1)-dimensional Zakharov-Kuznetsov equation with variable coefficients are given with the help of symbolic computation system Mathematica.

参考文献

[1] Wang Mingliang.Solitary wave solutions for variant Boussinesq equations[J].Phys.Lett.,1995,A199:169-172.
[2] Sirendaoreji,Sun Jiong.Auxiliary equation method for solving nonlinear partial differential equations[J].Phys.Lett.,2003,A309:387-396.
[3] Fu Zuntao,Liu Shida,Liu Shikuo.Solving nonlinear wave equations by elliptic equation[J].Commun.Theor.Phys.,2003,39(5):531-536.
[4] Zhao Xueqin,Zhi Hongyan,Zhang Hongqing.Construction of doubly-periodic solutions to nonlinear partial differential equations using improved Jacobi elliptic function expansion method and symbolic computation[J].Chin.Phys.,2006,15(10):2202-2209.
[5] Zhang Jinliang,Ren Dongfeng,Wang Mingliang,et al.The periodic wave solutions for the generalized Nizhnik-Novikov-Veselov equation[J].Chin.Phys.,2003,12(8):825-830.
[6] Pan Junting,Gong Lunxun.Jacobi elliptic function solutions to the coupled KdV-mKdV equation[J].Acta Physica Sinica(物理学报),2007,56(10):5585-5590 (in Chinese).
[7] Zhang Liang,Zhang Lifeng,Li Chongyin.Some new exact solutions of Jacobian elliptic function about the generalized Boussinesq equation and Boussinesq-Burgers equation[J].Chin.Phys.B,2008,17(2):403-410.
[8] Sirendaoerji,Sun jiong.Auxiliary equation method and its applications to nonlinear evolution equations[J].J.Modern.Phys.C,2003,14(8):1075-1085.
[9] Chen Yong,Li Biao.New exact travelling wave solutions for generalized Zakharov-Kuzentsov equations using general projentive Riccati equation method[J].Commun.Theor.Phys.,2004,41(1):1-6.
[10] Zhu Jiamin,Zheng Chunlong,Ma Zhengyi.A general mapping approach and new travelling wave solutions to the general variable coefficient KdV equation[J].Chin.Phys.,2004,13(12):2008-2012.
[11] Li Huamei.Exact periodic wave and soliton solutions in two-component Bose-Einstein condensates[J].Chin.Phys.,2007,16(11):3187-3191.
[12] Yan Zhenya,Zhang Hongqing.Exact soliton solutions of the variable coeficient KdV-MKdV equation with three arbitrary funtions[J].Acta Physica Sinica (物理学报),1999,48(11):1957-1961 (in Chinese).
[13] Fu Zuntao,Liu Shida,Liu Shikuo,et al.New exact solutions to KdV equations with variable coefficients or forcing[J].Appl.Math.Mech.(应用数学和力学),2004,25(1):67-73 (in Chinese).
[14] Liu Shikuo,Fu Zuntao,Liu Shida,et al.Jacobi elliptic function expansion solution to the variable coefficient nonlinear equations[J].Acta Physica Sinica (物理学报),2002,51(9):1923-1926 (in Chinese).
[15] Liu Chengshi.Using trial equation method to solve the exact solutions for two kinds KdV equations with variable coefficients[J].Acta Physica Sinica(物理学报),2005,54(10):4506-4510 (in Chinese).
[16] Zhang Jiefang,Chen Fangyue.rlyuncated expansion method and new exact soliton-like solution of the general variable coefficient KdV equation[J].Acta Physica Sinica(物理学报),2001,50(9):1648-1650 (in Chinese).
[17] Li Desheng,Zhang Hongqing.Improved tanh-function method and the new exact solutions for the general variable coefficient KdV equation and MKdV equation[J].Acta Physica Sinica(物理学报),2003,52(7):1569-1573(in Chinese).
[18] Lu Dianchen,Hong Baojian,Tian Lixin.Explicit and exact solutions to the variable coefficient combined KdV equation with forced term[J].Acta Phy.sica Sinica (物理学报),2006,55(11):5617-5622 (in Chinese).
[19] Mao Jiejian,et al..New solitary wave-like solution and exact solution of variable coefficient KP equation[J].Acta Physica Sinica(物理学报),2005,54(11):4999-5002 (in Chinese).
[20] Tian Guichen,et al.Exact solutions of the general variable coefficient KdV equation with external term[J].Chinese Journal of Quantum Electronics(量子电子学报),2005,22(3):339-343 (in Chinese).
[21] Shivamoggi B K,Rollins D K.Generalized painleve formulation of Lie group symmetries of the ZK equation[J].Phys.Lett.A,1991,160:263-266.
[22] Hamza A M.Akinetic derivation of a generalized ZK equation for ion acoustic turbulence in magnetized plasma[J].Phys.Lett.A,1994,190:309-316.
[23] Yang Hongjuan,Lu Kepu,Duan Wenshan,et al.The solitary wave solutions with varying velocity for the (3+1)-dimensional variable-coefficients ZK equation[J].J.Nor.Norm.Univ.Nat.Sci.(西北师范大学学报),2007,43(2):38-40 (in Chinese).
[24] Yan Zhilian,Liu Xiqiang.Symmetry and similarity solutions of variable coefficients generalized Zakharov-Kuzentsov equation[J].Appl.Math.Comput.,2006,180:288-294.
[25] Taogetusang,Sirendaoerji.New solitary wave solutions of the combined KdV equation with the variable coefficients[J].Chinese Journal of Quantum Electronics(量子电子学报),2009,26(2):148-154 (in Chinese).
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%